647 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			647 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHETRI_3X
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHETRI_3X + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_3x.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_3x.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_3x.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            A( LDA, * ),  E( * ), WORK( N+NB+1, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *> CHETRI_3X computes the inverse of a complex Hermitian indefinite
 | |
| *> matrix A using the factorization computed by CHETRF_RK or CHETRF_BK:
 | |
| *>
 | |
| *>     A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
 | |
| *>
 | |
| *> where U (or L) is unit upper (or lower) triangular matrix,
 | |
| *> U**H (or L**H) is the conjugate of U (or L), P is a permutation
 | |
| *> matrix, P**T is the transpose of P, and D is Hermitian and block
 | |
| *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 | |
| *>
 | |
| *> This is the blocked version of the algorithm, calling Level 3 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are
 | |
| *>          stored as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, diagonal of the block diagonal matrix D and
 | |
| *>          factors U or L as computed by CHETRF_RK and CHETRF_BK:
 | |
| *>            a) ONLY diagonal elements of the Hermitian block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                should be provided on entry in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the Hermitian inverse of the original
 | |
| *>          matrix.
 | |
| *>             If UPLO = 'U': the upper triangular part of the inverse
 | |
| *>             is formed and the part of A below the diagonal is not
 | |
| *>             referenced;
 | |
| *>             If UPLO = 'L': the lower triangular part of the inverse
 | |
| *>             is formed and the part of A above the diagonal is not
 | |
| *>             referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (N)
 | |
| *>          On entry, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the Hermitian block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
 | |
| *>
 | |
| *>          NOTE: For 1-by-1 diagonal block D(k), where
 | |
| *>          1 <= k <= N, the element E(k) is not referenced in both
 | |
| *>          UPLO = 'U' or UPLO = 'L' cases.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D
 | |
| *>          as determined by CHETRF_RK or CHETRF_BK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N+NB+1,NB+3).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          Block size.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 | |
| *>               inverse could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexHEcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  June 2017,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            A( LDA, * ), E( * ), WORK( N+NB+1, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
|       COMPLEX            CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
 | |
|      $                     CZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            CUT, I, ICOUNT, INVD, IP, K, NNB, J, U11
 | |
|       REAL               AK, AKP1, T
 | |
|       COMPLEX            AKKP1, D, U01_I_J, U01_IP1_J, U11_I_J,
 | |
|      $                   U11_IP1_J
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CHESWAPR, CTRTRI, CTRMM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHETRI_3X', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Workspace got Non-diag elements of D
 | |
| *
 | |
|       DO K = 1, N
 | |
|          WORK( K, 1 ) = E( K )
 | |
|       END DO
 | |
| *
 | |
| *     Check that the diagonal matrix D is nonsingular.
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Upper triangular storage: examine D from bottom to top
 | |
| *
 | |
|          DO INFO = N, 1, -1
 | |
|             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
 | |
|      $         RETURN
 | |
|          END DO
 | |
|       ELSE
 | |
| *
 | |
| *        Lower triangular storage: examine D from top to bottom.
 | |
| *
 | |
|          DO INFO = 1, N
 | |
|             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
 | |
|      $         RETURN
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Splitting Workspace
 | |
| *     U01 is a block ( N, NB+1 )
 | |
| *     The first element of U01 is in WORK( 1, 1 )
 | |
| *     U11 is a block ( NB+1, NB+1 )
 | |
| *     The first element of U11 is in WORK( N+1, 1 )
 | |
| *
 | |
|       U11 = N
 | |
| *
 | |
| *     INVD is a block ( N, 2 )
 | |
| *     The first element of INVD is in WORK( 1, INVD )
 | |
| *
 | |
|       INVD = NB + 2
 | |
| 
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Begin Upper
 | |
| *
 | |
| *        invA = P * inv(U**H) * inv(D) * inv(U) * P**T.
 | |
| *
 | |
|          CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
 | |
| *
 | |
| *        inv(D) and inv(D) * inv(U)
 | |
| *
 | |
|          K = 1
 | |
|          DO WHILE( K.LE.N )
 | |
|             IF( IPIV( K ).GT.0 ) THEN
 | |
| *              1 x 1 diagonal NNB
 | |
|                WORK( K, INVD ) = ONE / REAL( A( K, K ) )
 | |
|                WORK( K, INVD+1 ) = CZERO
 | |
|             ELSE
 | |
| *              2 x 2 diagonal NNB
 | |
|                T = ABS( WORK( K+1, 1 ) )
 | |
|                AK = REAL( A( K, K ) ) / T
 | |
|                AKP1 = REAL( A( K+1, K+1 ) ) / T
 | |
|                AKKP1 = WORK( K+1, 1 )  / T
 | |
|                D = T*( AK*AKP1-CONE )
 | |
|                WORK( K, INVD ) = AKP1 / D
 | |
|                WORK( K+1, INVD+1 ) = AK / D
 | |
|                WORK( K, INVD+1 ) = -AKKP1 / D
 | |
|                WORK( K+1, INVD ) = CONJG( WORK( K, INVD+1 ) )
 | |
|                K = K + 1
 | |
|             END IF
 | |
|             K = K + 1
 | |
|          END DO
 | |
| *
 | |
| *        inv(U**H) = (inv(U))**H
 | |
| *
 | |
| *        inv(U**H) * inv(D) * inv(U)
 | |
| *
 | |
|          CUT = N
 | |
|          DO WHILE( CUT.GT.0 )
 | |
|             NNB = NB
 | |
|             IF( CUT.LE.NNB ) THEN
 | |
|                NNB = CUT
 | |
|             ELSE
 | |
|                ICOUNT = 0
 | |
| *              count negative elements,
 | |
|                DO I = CUT+1-NNB, CUT
 | |
|                   IF( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
 | |
|                END DO
 | |
| *              need a even number for a clear cut
 | |
|                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
 | |
|             END IF
 | |
| 
 | |
|             CUT = CUT - NNB
 | |
| *
 | |
| *           U01 Block
 | |
| *
 | |
|             DO I = 1, CUT
 | |
|                DO J = 1, NNB
 | |
|                   WORK( I, J ) = A( I, CUT+J )
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           U11 Block
 | |
| *
 | |
|             DO I = 1, NNB
 | |
|                WORK( U11+I, I ) = CONE
 | |
|                DO J = 1, I-1
 | |
|                   WORK( U11+I, J ) = CZERO
 | |
|                 END DO
 | |
|                 DO J = I+1, NNB
 | |
|                    WORK( U11+I, J ) = A( CUT+I, CUT+J )
 | |
|                 END DO
 | |
|             END DO
 | |
| *
 | |
| *           invD * U01
 | |
| *
 | |
|             I = 1
 | |
|             DO WHILE( I.LE.CUT )
 | |
|                IF( IPIV( I ).GT.0 ) THEN
 | |
|                   DO J = 1, NNB
 | |
|                      WORK( I, J ) = WORK( I, INVD ) * WORK( I, J )
 | |
|                   END DO
 | |
|                ELSE
 | |
|                   DO J = 1, NNB
 | |
|                      U01_I_J = WORK( I, J )
 | |
|                      U01_IP1_J = WORK( I+1, J )
 | |
|                      WORK( I, J ) = WORK( I, INVD ) * U01_I_J
 | |
|      $                            + WORK( I, INVD+1 ) * U01_IP1_J
 | |
|                      WORK( I+1, J ) = WORK( I+1, INVD ) * U01_I_J
 | |
|      $                              + WORK( I+1, INVD+1 ) * U01_IP1_J
 | |
|                   END DO
 | |
|                   I = I + 1
 | |
|                END IF
 | |
|                I = I + 1
 | |
|             END DO
 | |
| *
 | |
| *           invD1 * U11
 | |
| *
 | |
|             I = 1
 | |
|             DO WHILE ( I.LE.NNB )
 | |
|                IF( IPIV( CUT+I ).GT.0 ) THEN
 | |
|                   DO J = I, NNB
 | |
|                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
 | |
|                   END DO
 | |
|                ELSE
 | |
|                   DO J = I, NNB
 | |
|                      U11_I_J = WORK(U11+I,J)
 | |
|                      U11_IP1_J = WORK(U11+I+1,J)
 | |
|                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
 | |
|      $                            + WORK(CUT+I,INVD+1) * WORK(U11+I+1,J)
 | |
|                      WORK( U11+I+1, J ) = WORK(CUT+I+1,INVD) * U11_I_J
 | |
|      $                               + WORK(CUT+I+1,INVD+1) * U11_IP1_J
 | |
|                   END DO
 | |
|                   I = I + 1
 | |
|                END IF
 | |
|                I = I + 1
 | |
|             END DO
 | |
| *
 | |
| *           U11**H * invD1 * U11 -> U11
 | |
| *
 | |
|             CALL CTRMM( 'L', 'U', 'C', 'U', NNB, NNB,
 | |
|      $                 CONE, A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
 | |
|      $                 N+NB+1 )
 | |
| *
 | |
|             DO I = 1, NNB
 | |
|                DO J = I, NNB
 | |
|                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           U01**H * invD * U01 -> A( CUT+I, CUT+J )
 | |
| *
 | |
|             CALL CGEMM( 'C', 'N', NNB, NNB, CUT, CONE, A( 1, CUT+1 ),
 | |
|      $                  LDA, WORK, N+NB+1, CZERO, WORK(U11+1,1),
 | |
|      $                  N+NB+1 )
 | |
| 
 | |
| *
 | |
| *           U11 =  U11**H * invD1 * U11 + U01**H * invD * U01
 | |
| *
 | |
|             DO I = 1, NNB
 | |
|                DO J = I, NNB
 | |
|                   A( CUT+I, CUT+J ) = A( CUT+I, CUT+J ) + WORK(U11+I,J)
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           U01 =  U00**H * invD0 * U01
 | |
| *
 | |
|             CALL CTRMM( 'L', UPLO, 'C', 'U', CUT, NNB,
 | |
|      $                  CONE, A, LDA, WORK, N+NB+1 )
 | |
| 
 | |
| *
 | |
| *           Update U01
 | |
| *
 | |
|             DO I = 1, CUT
 | |
|                DO J = 1, NNB
 | |
|                   A( I, CUT+J ) = WORK( I, J )
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           Next Block
 | |
| *
 | |
|          END DO
 | |
| *
 | |
| *        Apply PERMUTATIONS P and P**T:
 | |
| *        P * inv(U**H) * inv(D) * inv(U) * P**T.
 | |
| *        Interchange rows and columns I and IPIV(I) in reverse order
 | |
| *        from the formation order of IPIV vector for Upper case.
 | |
| *
 | |
| *        ( We can use a loop over IPIV with increment 1,
 | |
| *        since the ABS value of IPIV(I) represents the row (column)
 | |
| *        index of the interchange with row (column) i in both 1x1
 | |
| *        and 2x2 pivot cases, i.e. we don't need separate code branches
 | |
| *        for 1x1 and 2x2 pivot cases )
 | |
| *
 | |
|          DO I = 1, N
 | |
|              IP = ABS( IPIV( I ) )
 | |
|              IF( IP.NE.I ) THEN
 | |
|                 IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
 | |
|                 IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
 | |
|              END IF
 | |
|          END DO
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Begin Lower
 | |
| *
 | |
| *        inv A = P * inv(L**H) * inv(D) * inv(L) * P**T.
 | |
| *
 | |
|          CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO )
 | |
| *
 | |
| *        inv(D) and inv(D) * inv(L)
 | |
| *
 | |
|          K = N
 | |
|          DO WHILE ( K .GE. 1 )
 | |
|             IF( IPIV( K ).GT.0 ) THEN
 | |
| *              1 x 1 diagonal NNB
 | |
|                WORK( K, INVD ) = ONE / REAL( A( K, K ) )
 | |
|                WORK( K, INVD+1 ) = CZERO
 | |
|             ELSE
 | |
| *              2 x 2 diagonal NNB
 | |
|                T = ABS( WORK( K-1, 1 ) )
 | |
|                AK = REAL( A( K-1, K-1 ) ) / T
 | |
|                AKP1 = REAL( A( K, K ) ) / T
 | |
|                AKKP1 = WORK( K-1, 1 ) / T
 | |
|                D = T*( AK*AKP1-CONE )
 | |
|                WORK( K-1, INVD ) = AKP1 / D
 | |
|                WORK( K, INVD ) = AK / D
 | |
|                WORK( K, INVD+1 ) = -AKKP1 / D
 | |
|                WORK( K-1, INVD+1 ) = CONJG( WORK( K, INVD+1 ) )
 | |
|                K = K - 1
 | |
|             END IF
 | |
|             K = K - 1
 | |
|          END DO
 | |
| *
 | |
| *        inv(L**H) = (inv(L))**H
 | |
| *
 | |
| *        inv(L**H) * inv(D) * inv(L)
 | |
| *
 | |
|          CUT = 0
 | |
|          DO WHILE( CUT.LT.N )
 | |
|             NNB = NB
 | |
|             IF( (CUT + NNB).GT.N ) THEN
 | |
|                NNB = N - CUT
 | |
|             ELSE
 | |
|                ICOUNT = 0
 | |
| *              count negative elements,
 | |
|                DO I = CUT + 1, CUT+NNB
 | |
|                   IF ( IPIV( I ).LT.0 ) ICOUNT = ICOUNT + 1
 | |
|                END DO
 | |
| *              need a even number for a clear cut
 | |
|                IF( MOD( ICOUNT, 2 ).EQ.1 ) NNB = NNB + 1
 | |
|             END IF
 | |
| *
 | |
| *           L21 Block
 | |
| *
 | |
|             DO I = 1, N-CUT-NNB
 | |
|                DO J = 1, NNB
 | |
|                  WORK( I, J ) = A( CUT+NNB+I, CUT+J )
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           L11 Block
 | |
| *
 | |
|             DO I = 1, NNB
 | |
|                WORK( U11+I, I) = CONE
 | |
|                DO J = I+1, NNB
 | |
|                   WORK( U11+I, J ) = CZERO
 | |
|                END DO
 | |
|                DO J = 1, I-1
 | |
|                   WORK( U11+I, J ) = A( CUT+I, CUT+J )
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
| *           invD*L21
 | |
| *
 | |
|             I = N-CUT-NNB
 | |
|             DO WHILE( I.GE.1 )
 | |
|                IF( IPIV( CUT+NNB+I ).GT.0 ) THEN
 | |
|                   DO J = 1, NNB
 | |
|                      WORK( I, J ) = WORK( CUT+NNB+I, INVD) * WORK( I, J)
 | |
|                   END DO
 | |
|                ELSE
 | |
|                   DO J = 1, NNB
 | |
|                      U01_I_J = WORK(I,J)
 | |
|                      U01_IP1_J = WORK(I-1,J)
 | |
|                      WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+
 | |
|      $                        WORK(CUT+NNB+I,INVD+1)*U01_IP1_J
 | |
|                      WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+
 | |
|      $                        WORK(CUT+NNB+I-1,INVD)*U01_IP1_J
 | |
|                   END DO
 | |
|                   I = I - 1
 | |
|                END IF
 | |
|                I = I - 1
 | |
|             END DO
 | |
| *
 | |
| *           invD1*L11
 | |
| *
 | |
|             I = NNB
 | |
|             DO WHILE( I.GE.1 )
 | |
|                IF( IPIV( CUT+I ).GT.0 ) THEN
 | |
|                   DO J = 1, NNB
 | |
|                      WORK( U11+I, J ) = WORK( CUT+I, INVD)*WORK(U11+I,J)
 | |
|                   END DO
 | |
| 
 | |
|                ELSE
 | |
|                   DO J = 1, NNB
 | |
|                      U11_I_J = WORK( U11+I, J )
 | |
|                      U11_IP1_J = WORK( U11+I-1, J )
 | |
|                      WORK( U11+I, J ) = WORK(CUT+I,INVD) * WORK(U11+I,J)
 | |
|      $                                + WORK(CUT+I,INVD+1) * U11_IP1_J
 | |
|                      WORK( U11+I-1, J ) = WORK(CUT+I-1,INVD+1) * U11_I_J
 | |
|      $                                  + WORK(CUT+I-1,INVD) * U11_IP1_J
 | |
|                   END DO
 | |
|                   I = I - 1
 | |
|                END IF
 | |
|                I = I - 1
 | |
|             END DO
 | |
| *
 | |
| *           L11**H * invD1 * L11 -> L11
 | |
| *
 | |
|             CALL CTRMM( 'L', UPLO, 'C', 'U', NNB, NNB, CONE,
 | |
|      $                   A( CUT+1, CUT+1 ), LDA, WORK( U11+1, 1 ),
 | |
|      $                   N+NB+1 )
 | |
| 
 | |
| *
 | |
|             DO I = 1, NNB
 | |
|                DO J = 1, I
 | |
|                   A( CUT+I, CUT+J ) = WORK( U11+I, J )
 | |
|                END DO
 | |
|             END DO
 | |
| *
 | |
|             IF( (CUT+NNB).LT.N ) THEN
 | |
| *
 | |
| *              L21**H * invD2*L21 -> A( CUT+I, CUT+J )
 | |
| *
 | |
|                CALL CGEMM( 'C', 'N', NNB, NNB, N-NNB-CUT, CONE,
 | |
|      $                     A( CUT+NNB+1, CUT+1 ), LDA, WORK, N+NB+1,
 | |
|      $                     CZERO, WORK( U11+1, 1 ), N+NB+1 )
 | |
| 
 | |
| *
 | |
| *              L11 =  L11**H * invD1 * L11 + U01**H * invD * U01
 | |
| *
 | |
|                DO I = 1, NNB
 | |
|                   DO J = 1, I
 | |
|                      A( CUT+I, CUT+J ) = A( CUT+I, CUT+J )+WORK(U11+I,J)
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
| *              L01 =  L22**H * invD2 * L21
 | |
| *
 | |
|                CALL CTRMM( 'L', UPLO, 'C', 'U', N-NNB-CUT, NNB, CONE,
 | |
|      $                     A( CUT+NNB+1, CUT+NNB+1 ), LDA, WORK,
 | |
|      $                     N+NB+1 )
 | |
| *
 | |
| *              Update L21
 | |
| *
 | |
|                DO I = 1, N-CUT-NNB
 | |
|                   DO J = 1, NNB
 | |
|                      A( CUT+NNB+I, CUT+J ) = WORK( I, J )
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              L11 =  L11**H * invD1 * L11
 | |
| *
 | |
|                DO I = 1, NNB
 | |
|                   DO J = 1, I
 | |
|                      A( CUT+I, CUT+J ) = WORK( U11+I, J )
 | |
|                   END DO
 | |
|                END DO
 | |
|             END IF
 | |
| *
 | |
| *           Next Block
 | |
| *
 | |
|             CUT = CUT + NNB
 | |
| *
 | |
|          END DO
 | |
| *
 | |
| *        Apply PERMUTATIONS P and P**T:
 | |
| *        P * inv(L**H) * inv(D) * inv(L) * P**T.
 | |
| *        Interchange rows and columns I and IPIV(I) in reverse order
 | |
| *        from the formation order of IPIV vector for Lower case.
 | |
| *
 | |
| *        ( We can use a loop over IPIV with increment -1,
 | |
| *        since the ABS value of IPIV(I) represents the row (column)
 | |
| *        index of the interchange with row (column) i in both 1x1
 | |
| *        and 2x2 pivot cases, i.e. we don't need separate code branches
 | |
| *        for 1x1 and 2x2 pivot cases )
 | |
| *
 | |
|          DO I = N, 1, -1
 | |
|              IP = ABS( IPIV( I ) )
 | |
|              IF( IP.NE.I ) THEN
 | |
|                 IF (I .LT. IP) CALL CHESWAPR( UPLO, N, A, LDA, I ,IP )
 | |
|                 IF (I .GT. IP) CALL CHESWAPR( UPLO, N, A, LDA, IP ,I )
 | |
|              END IF
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHETRI_3X
 | |
| *
 | |
|       END
 |