229 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZTPTRS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZTPTRS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztptrs.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztptrs.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztptrs.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, TRANS, UPLO
 | 
						|
*       INTEGER            INFO, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         AP( * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZTPTRS solves a triangular system of the form
 | 
						|
*>
 | 
						|
*>    A * X = B,  A**T * X = B,  or  A**H * X = B,
 | 
						|
*>
 | 
						|
*> where A is a triangular matrix of order N stored in packed format,
 | 
						|
*> and B is an N-by-NRHS matrix.  A check is made to verify that A is
 | 
						|
*> nonsingular.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  A is upper triangular;
 | 
						|
*>          = 'L':  A is lower triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the form of the system of equations:
 | 
						|
*>          = 'N':  A * X = B     (No transpose)
 | 
						|
*>          = 'T':  A**T * X = B  (Transpose)
 | 
						|
*>          = 'C':  A**H * X = B  (Conjugate transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          = 'N':  A is non-unit triangular;
 | 
						|
*>          = 'U':  A is unit triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          The upper or lower triangular matrix A, packed columnwise in
 | 
						|
*>          a linear array.  The j-th column of A is stored in the array
 | 
						|
*>          AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side matrix B.
 | 
						|
*>          On exit, if INFO = 0, the solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the i-th diagonal element of A is zero,
 | 
						|
*>                indicating that the matrix is singular and the
 | 
						|
*>                solutions X have not been computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, TRANS, UPLO
 | 
						|
      INTEGER            INFO, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         AP( * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOUNIT, UPPER
 | 
						|
      INTEGER            J, JC
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZTPSV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      NOUNIT = LSAME( DIAG, 'N' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.
 | 
						|
     $         LSAME( TRANS, 'T' ) .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZTPTRS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Check for singularity.
 | 
						|
*
 | 
						|
      IF( NOUNIT ) THEN
 | 
						|
         IF( UPPER ) THEN
 | 
						|
            JC = 1
 | 
						|
            DO 10 INFO = 1, N
 | 
						|
               IF( AP( JC+INFO-1 ).EQ.ZERO )
 | 
						|
     $            RETURN
 | 
						|
               JC = JC + INFO
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JC = 1
 | 
						|
            DO 20 INFO = 1, N
 | 
						|
               IF( AP( JC ).EQ.ZERO )
 | 
						|
     $            RETURN
 | 
						|
               JC = JC + N - INFO + 1
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Solve  A * x = b,  A**T * x = b,  or  A**H * x = b.
 | 
						|
*
 | 
						|
      DO 30 J = 1, NRHS
 | 
						|
         CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, B( 1, J ), 1 )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZTPTRS
 | 
						|
*
 | 
						|
      END
 |