222 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SPTCON
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SPTCON + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptcon.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptcon.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptcon.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       REAL               ANORM, RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               D( * ), E( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SPTCON computes the reciprocal of the condition number (in the
 | 
						|
*> 1-norm) of a real symmetric positive definite tridiagonal matrix
 | 
						|
*> using the factorization A = L*D*L**T or A = U**T*D*U computed by
 | 
						|
*> SPTTRF.
 | 
						|
*>
 | 
						|
*> Norm(inv(A)) is computed by a direct method, and the reciprocal of
 | 
						|
*> the condition number is computed as
 | 
						|
*>              RCOND = 1 / (ANORM * norm(inv(A))).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the diagonal matrix D from the
 | 
						|
*>          factorization of A, as computed by SPTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N-1)
 | 
						|
*>          The (n-1) off-diagonal elements of the unit bidiagonal factor
 | 
						|
*>          U or L from the factorization of A,  as computed by SPTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ANORM
 | 
						|
*> \verbatim
 | 
						|
*>          ANORM is REAL
 | 
						|
*>          The 1-norm of the original matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The reciprocal of the condition number of the matrix A,
 | 
						|
*>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
 | 
						|
*>          1-norm of inv(A) computed in this routine.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realPTcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The method used is described in Nicholas J. Higham, "Efficient
 | 
						|
*>  Algorithms for Computing the Condition Number of a Tridiagonal
 | 
						|
*>  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, N
 | 
						|
      REAL               ANORM, RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               D( * ), E( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IX
 | 
						|
      REAL               AINVNM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      EXTERNAL           ISAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ANORM.LT.ZERO ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SPTCON', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RCOND = ZERO
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM.EQ.ZERO ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check that D(1:N) is positive.
 | 
						|
*
 | 
						|
      DO 10 I = 1, N
 | 
						|
         IF( D( I ).LE.ZERO )
 | 
						|
     $      RETURN
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
 | 
						|
*
 | 
						|
*        m(i,j) =  abs(A(i,j)), i = j,
 | 
						|
*        m(i,j) = -abs(A(i,j)), i .ne. j,
 | 
						|
*
 | 
						|
*     and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**T.
 | 
						|
*
 | 
						|
*     Solve M(L) * x = e.
 | 
						|
*
 | 
						|
      WORK( 1 ) = ONE
 | 
						|
      DO 20 I = 2, N
 | 
						|
         WORK( I ) = ONE + WORK( I-1 )*ABS( E( I-1 ) )
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Solve D * M(L)**T * x = b.
 | 
						|
*
 | 
						|
      WORK( N ) = WORK( N ) / D( N )
 | 
						|
      DO 30 I = N - 1, 1, -1
 | 
						|
         WORK( I ) = WORK( I ) / D( I ) + WORK( I+1 )*ABS( E( I ) )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Compute AINVNM = max(x(i)), 1<=i<=n.
 | 
						|
*
 | 
						|
      IX = ISAMAX( N, WORK, 1 )
 | 
						|
      AINVNM = ABS( WORK( IX ) )
 | 
						|
*
 | 
						|
*     Compute the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM.NE.ZERO )
 | 
						|
     $   RCOND = ( ONE / AINVNM ) / ANORM
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SPTCON
 | 
						|
*
 | 
						|
      END
 |