965 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			965 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLANSF
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLANSF + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slansf.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slansf.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slansf.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM, TRANSR, UPLO
 | 
						|
*       INTEGER            N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( 0: * ), WORK( 0: * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLANSF returns the value of the one norm, or the Frobenius norm, or
 | 
						|
*> the infinity norm, or the element of largest absolute value of a
 | 
						|
*> real symmetric matrix A in RFP format.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \return SLANSF
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | 
						|
*>             (
 | 
						|
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | 
						|
*>             (
 | 
						|
*>             ( normI(A),         NORM = 'I' or 'i'
 | 
						|
*>             (
 | 
						|
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | 
						|
*>
 | 
						|
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | 
						|
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | 
						|
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | 
						|
*> squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies the value to be returned in SLANSF as described
 | 
						|
*>          above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSR
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSR is CHARACTER*1
 | 
						|
*>          Specifies whether the RFP format of A is normal or
 | 
						|
*>          transposed format.
 | 
						|
*>          = 'N':  RFP format is Normal;
 | 
						|
*>          = 'T':  RFP format is Transpose.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On entry, UPLO specifies whether the RFP matrix A came from
 | 
						|
*>           an upper or lower triangular matrix as follows:
 | 
						|
*>           = 'U': RFP A came from an upper triangular matrix;
 | 
						|
*>           = 'L': RFP A came from a lower triangular matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0. When N = 0, SLANSF is
 | 
						|
*>          set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension ( N*(N+1)/2 );
 | 
						|
*>          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
 | 
						|
*>          part of the symmetric matrix A stored in RFP format. See the
 | 
						|
*>          "Notes" below for more details.
 | 
						|
*>          Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK)),
 | 
						|
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 | 
						|
*>          WORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  We first consider Rectangular Full Packed (RFP) Format when N is
 | 
						|
*>  even. We give an example where N = 6.
 | 
						|
*>
 | 
						|
*>      AP is Upper             AP is Lower
 | 
						|
*>
 | 
						|
*>   00 01 02 03 04 05       00
 | 
						|
*>      11 12 13 14 15       10 11
 | 
						|
*>         22 23 24 25       20 21 22
 | 
						|
*>            33 34 35       30 31 32 33
 | 
						|
*>               44 45       40 41 42 43 44
 | 
						|
*>                  55       50 51 52 53 54 55
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  Let TRANSR = 'N'. RFP holds AP as follows:
 | 
						|
*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | 
						|
*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | 
						|
*>  the transpose of the first three columns of AP upper.
 | 
						|
*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | 
						|
*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | 
						|
*>  the transpose of the last three columns of AP lower.
 | 
						|
*>  This covers the case N even and TRANSR = 'N'.
 | 
						|
*>
 | 
						|
*>         RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>        03 04 05                33 43 53
 | 
						|
*>        13 14 15                00 44 54
 | 
						|
*>        23 24 25                10 11 55
 | 
						|
*>        33 34 35                20 21 22
 | 
						|
*>        00 44 45                30 31 32
 | 
						|
*>        01 11 55                40 41 42
 | 
						|
*>        02 12 22                50 51 52
 | 
						|
*>
 | 
						|
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | 
						|
*>  transpose of RFP A above. One therefore gets:
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>           RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | 
						|
*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | 
						|
*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  We then consider Rectangular Full Packed (RFP) Format when N is
 | 
						|
*>  odd. We give an example where N = 5.
 | 
						|
*>
 | 
						|
*>     AP is Upper                 AP is Lower
 | 
						|
*>
 | 
						|
*>   00 01 02 03 04              00
 | 
						|
*>      11 12 13 14              10 11
 | 
						|
*>         22 23 24              20 21 22
 | 
						|
*>            33 34              30 31 32 33
 | 
						|
*>               44              40 41 42 43 44
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  Let TRANSR = 'N'. RFP holds AP as follows:
 | 
						|
*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | 
						|
*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | 
						|
*>  the transpose of the first two columns of AP upper.
 | 
						|
*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | 
						|
*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | 
						|
*>  the transpose of the last two columns of AP lower.
 | 
						|
*>  This covers the case N odd and TRANSR = 'N'.
 | 
						|
*>
 | 
						|
*>         RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>        02 03 04                00 33 43
 | 
						|
*>        12 13 14                10 11 44
 | 
						|
*>        22 23 24                20 21 22
 | 
						|
*>        00 33 34                30 31 32
 | 
						|
*>        01 11 44                40 41 42
 | 
						|
*>
 | 
						|
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | 
						|
*>  transpose of RFP A above. One therefore gets:
 | 
						|
*>
 | 
						|
*>           RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>     02 12 22 00 01             00 10 20 30 40 50
 | 
						|
*>     03 13 23 33 11             33 11 21 31 41 51
 | 
						|
*>     04 14 24 34 44             43 44 22 32 42 52
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM, TRANSR, UPLO
 | 
						|
      INTEGER            N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( 0: * ), WORK( 0: * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, IFM, ILU, NOE, N1, K, L, LDA
 | 
						|
      REAL               SCALE, S, VALUE, AA, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, SISNAN
 | 
						|
      EXTERNAL           LSAME, SISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLASSQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         SLANSF = ZERO
 | 
						|
         RETURN
 | 
						|
      ELSE IF( N.EQ.1 ) THEN
 | 
						|
         SLANSF = ABS( A(0) )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     set noe = 1 if n is odd. if n is even set noe=0
 | 
						|
*
 | 
						|
      NOE = 1
 | 
						|
      IF( MOD( N, 2 ).EQ.0 )
 | 
						|
     $   NOE = 0
 | 
						|
*
 | 
						|
*     set ifm = 0 when form='T or 't' and 1 otherwise
 | 
						|
*
 | 
						|
      IFM = 1
 | 
						|
      IF( LSAME( TRANSR, 'T' ) )
 | 
						|
     $   IFM = 0
 | 
						|
*
 | 
						|
*     set ilu = 0 when uplo='U or 'u' and 1 otherwise
 | 
						|
*
 | 
						|
      ILU = 1
 | 
						|
      IF( LSAME( UPLO, 'U' ) )
 | 
						|
     $   ILU = 0
 | 
						|
*
 | 
						|
*     set lda = (n+1)/2 when ifm = 0
 | 
						|
*     set lda = n when ifm = 1 and noe = 1
 | 
						|
*     set lda = n+1 when ifm = 1 and noe = 0
 | 
						|
*
 | 
						|
      IF( IFM.EQ.1 ) THEN
 | 
						|
         IF( NOE.EQ.1 ) THEN
 | 
						|
            LDA = N
 | 
						|
         ELSE
 | 
						|
*           noe=0
 | 
						|
            LDA = N + 1
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*        ifm=0
 | 
						|
         LDA = ( N+1 ) / 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( NORM, 'M' ) ) THEN
 | 
						|
*
 | 
						|
*       Find max(abs(A(i,j))).
 | 
						|
*
 | 
						|
         K = ( N+1 ) / 2
 | 
						|
         VALUE = ZERO
 | 
						|
         IF( NOE.EQ.1 ) THEN
 | 
						|
*           n is odd
 | 
						|
            IF( IFM.EQ.1 ) THEN
 | 
						|
*           A is n by k
 | 
						|
               DO J = 0, K - 1
 | 
						|
                  DO I = 0, N - 1
 | 
						|
                     TEMP = ABS( A( I+J*LDA ) )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*              xpose case; A is k by n
 | 
						|
               DO J = 0, N - 1
 | 
						|
                  DO I = 0, K - 1
 | 
						|
                     TEMP = ABS( A( I+J*LDA ) )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*           n is even
 | 
						|
            IF( IFM.EQ.1 ) THEN
 | 
						|
*              A is n+1 by k
 | 
						|
               DO J = 0, K - 1
 | 
						|
                  DO I = 0, N
 | 
						|
                     TEMP = ABS( A( I+J*LDA ) )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*              xpose case; A is k by n+1
 | 
						|
               DO J = 0, N
 | 
						|
                  DO I = 0, K - 1
 | 
						|
                     TEMP = ABS( A( I+J*LDA ) )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
 | 
						|
     $         ( NORM.EQ.'1' ) ) THEN
 | 
						|
*
 | 
						|
*        Find normI(A) ( = norm1(A), since A is symmetric).
 | 
						|
*
 | 
						|
         IF( IFM.EQ.1 ) THEN
 | 
						|
            K = N / 2
 | 
						|
            IF( NOE.EQ.1 ) THEN
 | 
						|
*              n is odd
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
                  DO I = 0, K - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, K + J - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(i,j+k)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                     END DO
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j+k,j+k)
 | 
						|
                     WORK( J+K ) = S + AA
 | 
						|
                     IF( I.EQ.K+K )
 | 
						|
     $                  GO TO 10
 | 
						|
                     I = I + 1
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j,j)
 | 
						|
                     WORK( J ) = WORK( J ) + AA
 | 
						|
                     S = ZERO
 | 
						|
                     DO L = J + 1, K - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(l,j)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
   10             CONTINUE
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               ELSE
 | 
						|
*                 ilu = 1
 | 
						|
                  K = K + 1
 | 
						|
*                 k=(n+1)/2 for n odd and ilu=1
 | 
						|
                  DO I = K, N - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = K - 1, 0, -1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, J - 2
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(j+k,i+k)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( I+K ) = WORK( I+K ) + AA
 | 
						|
                     END DO
 | 
						|
                     IF( J.GT.0 ) THEN
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(j+k,j+k)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( I+K ) = WORK( I+K ) + S
 | 
						|
*                       i=j
 | 
						|
                        I = I + 1
 | 
						|
                     END IF
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j,j)
 | 
						|
                     WORK( J ) = AA
 | 
						|
                     S = ZERO
 | 
						|
                     DO L = J + 1, N - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(l,j)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*              n is even
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
                  DO I = 0, K - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, K + J - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(i,j+k)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                     END DO
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j+k,j+k)
 | 
						|
                     WORK( J+K ) = S + AA
 | 
						|
                     I = I + 1
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j,j)
 | 
						|
                     WORK( J ) = WORK( J ) + AA
 | 
						|
                     S = ZERO
 | 
						|
                     DO L = J + 1, K - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(l,j)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               ELSE
 | 
						|
*                 ilu = 1
 | 
						|
                  DO I = K, N - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = K - 1, 0, -1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, J - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(j+k,i+k)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( I+K ) = WORK( I+K ) + AA
 | 
						|
                     END DO
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j+k,j+k)
 | 
						|
                     S = S + AA
 | 
						|
                     WORK( I+K ) = WORK( I+K ) + S
 | 
						|
*                    i=j
 | 
						|
                     I = I + 1
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    -> A(j,j)
 | 
						|
                     WORK( J ) = AA
 | 
						|
                     S = ZERO
 | 
						|
                     DO L = J + 1, N - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       -> A(l,j)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*           ifm=0
 | 
						|
            K = N / 2
 | 
						|
            IF( NOE.EQ.1 ) THEN
 | 
						|
*              n is odd
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
                  N1 = K
 | 
						|
*                 n/2
 | 
						|
                  K = K + 1
 | 
						|
*                 k is the row size and lda
 | 
						|
                  DO I = N1, N - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, N1 - 1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, K - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j,n1+i)
 | 
						|
                        WORK( I+N1 ) = WORK( I+N1 ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = S
 | 
						|
                  END DO
 | 
						|
*                 j=n1=k-1 is special
 | 
						|
                  S = ABS( A( 0+J*LDA ) )
 | 
						|
*                 A(k-1,k-1)
 | 
						|
                  DO I = 1, K - 1
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(k-1,i+n1)
 | 
						|
                     WORK( I+N1 ) = WORK( I+N1 ) + AA
 | 
						|
                     S = S + AA
 | 
						|
                  END DO
 | 
						|
                  WORK( J ) = WORK( J ) + S
 | 
						|
                  DO J = K, N - 1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, J - K - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(i,j-k)
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
*                    i=j-k
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(j-k,j-k)
 | 
						|
                     S = S + AA
 | 
						|
                     WORK( J-K ) = WORK( J-K ) + S
 | 
						|
                     I = I + 1
 | 
						|
                     S = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(j,j)
 | 
						|
                     DO L = J + 1, N - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j,l)
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               ELSE
 | 
						|
*                 ilu=1
 | 
						|
                  K = K + 1
 | 
						|
*                 k=(n+1)/2 for n odd and ilu=1
 | 
						|
                  DO I = K, N - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 2
 | 
						|
*                    process
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, J - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j,i)
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    i=j so process of A(j,j)
 | 
						|
                     S = S + AA
 | 
						|
                     WORK( J ) = S
 | 
						|
*                    is initialised here
 | 
						|
                     I = I + 1
 | 
						|
*                    i=j process A(j+k,j+k)
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
                     S = AA
 | 
						|
                     DO L = K + J + 1, N - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(l,k+j)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( K+J ) = WORK( K+J ) + S
 | 
						|
                  END DO
 | 
						|
*                 j=k-1 is special :process col A(k-1,0:k-1)
 | 
						|
                  S = ZERO
 | 
						|
                  DO I = 0, K - 2
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(k,i)
 | 
						|
                     WORK( I ) = WORK( I ) + AA
 | 
						|
                     S = S + AA
 | 
						|
                  END DO
 | 
						|
*                 i=k-1
 | 
						|
                  AA = ABS( A( I+J*LDA ) )
 | 
						|
*                 A(k-1,k-1)
 | 
						|
                  S = S + AA
 | 
						|
                  WORK( I ) = S
 | 
						|
*                 done with col j=k+1
 | 
						|
                  DO J = K, N - 1
 | 
						|
*                    process col j of A = A(j,0:k-1)
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, K - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j,i)
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*              n is even
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
                  DO I = K, N - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, K - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j,i+k)
 | 
						|
                        WORK( I+K ) = WORK( I+K ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = S
 | 
						|
                  END DO
 | 
						|
*                 j=k
 | 
						|
                  AA = ABS( A( 0+J*LDA ) )
 | 
						|
*                 A(k,k)
 | 
						|
                  S = AA
 | 
						|
                  DO I = 1, K - 1
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(k,k+i)
 | 
						|
                     WORK( I+K ) = WORK( I+K ) + AA
 | 
						|
                     S = S + AA
 | 
						|
                  END DO
 | 
						|
                  WORK( J ) = WORK( J ) + S
 | 
						|
                  DO J = K + 1, N - 1
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, J - 2 - K
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(i,j-k-1)
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
*                     i=j-1-k
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(j-k-1,j-k-1)
 | 
						|
                     S = S + AA
 | 
						|
                     WORK( J-K-1 ) = WORK( J-K-1 ) + S
 | 
						|
                     I = I + 1
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(j,j)
 | 
						|
                     S = AA
 | 
						|
                     DO L = J + 1, N - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j,l)
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J ) = WORK( J ) + S
 | 
						|
                  END DO
 | 
						|
*                 j=n
 | 
						|
                  S = ZERO
 | 
						|
                  DO I = 0, K - 2
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(i,k-1)
 | 
						|
                     WORK( I ) = WORK( I ) + AA
 | 
						|
                     S = S + AA
 | 
						|
                  END DO
 | 
						|
*                 i=k-1
 | 
						|
                  AA = ABS( A( I+J*LDA ) )
 | 
						|
*                 A(k-1,k-1)
 | 
						|
                  S = S + AA
 | 
						|
                  WORK( I ) = WORK( I ) + S
 | 
						|
                  VALUE = WORK ( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               ELSE
 | 
						|
*                 ilu=1
 | 
						|
                  DO I = K, N - 1
 | 
						|
                     WORK( I ) = ZERO
 | 
						|
                  END DO
 | 
						|
*                 j=0 is special :process col A(k:n-1,k)
 | 
						|
                  S = ABS( A( 0 ) )
 | 
						|
*                 A(k,k)
 | 
						|
                  DO I = 1, K - 1
 | 
						|
                     AA = ABS( A( I ) )
 | 
						|
*                    A(k+i,k)
 | 
						|
                     WORK( I+K ) = WORK( I+K ) + AA
 | 
						|
                     S = S + AA
 | 
						|
                  END DO
 | 
						|
                  WORK( K ) = WORK( K ) + S
 | 
						|
                  DO J = 1, K - 1
 | 
						|
*                    process
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, J - 2
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j-1,i)
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    i=j-1 so process of A(j-1,j-1)
 | 
						|
                     S = S + AA
 | 
						|
                     WORK( J-1 ) = S
 | 
						|
*                    is initialised here
 | 
						|
                     I = I + 1
 | 
						|
*                    i=j process A(j+k,j+k)
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
                     S = AA
 | 
						|
                     DO L = K + J + 1, N - 1
 | 
						|
                        I = I + 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(l,k+j)
 | 
						|
                        S = S + AA
 | 
						|
                        WORK( L ) = WORK( L ) + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( K+J ) = WORK( K+J ) + S
 | 
						|
                  END DO
 | 
						|
*                 j=k is special :process col A(k,0:k-1)
 | 
						|
                  S = ZERO
 | 
						|
                  DO I = 0, K - 2
 | 
						|
                     AA = ABS( A( I+J*LDA ) )
 | 
						|
*                    A(k,i)
 | 
						|
                     WORK( I ) = WORK( I ) + AA
 | 
						|
                     S = S + AA
 | 
						|
                  END DO
 | 
						|
*                 i=k-1
 | 
						|
                  AA = ABS( A( I+J*LDA ) )
 | 
						|
*                 A(k-1,k-1)
 | 
						|
                  S = S + AA
 | 
						|
                  WORK( I ) = S
 | 
						|
*                 done with col j=k+1
 | 
						|
                  DO J = K + 1, N
 | 
						|
*                    process col j-1 of A = A(j-1,0:k-1)
 | 
						|
                     S = ZERO
 | 
						|
                     DO I = 0, K - 1
 | 
						|
                        AA = ABS( A( I+J*LDA ) )
 | 
						|
*                       A(j-1,i)
 | 
						|
                        WORK( I ) = WORK( I ) + AA
 | 
						|
                        S = S + AA
 | 
						|
                     END DO
 | 
						|
                     WORK( J-1 ) = WORK( J-1 ) + S
 | 
						|
                  END DO
 | 
						|
                  VALUE = WORK( 0 )
 | 
						|
                  DO I = 1, N-1
 | 
						|
                     TEMP = WORK( I )
 | 
						|
                     IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
 | 
						|
     $                    VALUE = TEMP
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | 
						|
*
 | 
						|
*       Find normF(A).
 | 
						|
*
 | 
						|
         K = ( N+1 ) / 2
 | 
						|
         SCALE = ZERO
 | 
						|
         S = ONE
 | 
						|
         IF( NOE.EQ.1 ) THEN
 | 
						|
*           n is odd
 | 
						|
            IF( IFM.EQ.1 ) THEN
 | 
						|
*              A is normal
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
*                 A is upper
 | 
						|
                  DO J = 0, K - 3
 | 
						|
                     CALL SLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
 | 
						|
*                    L at A(k,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     CALL SLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    trap U at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K-1, A( K ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(k,0)
 | 
						|
                  CALL SLASSQ( K, A( K-1 ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(k-1,0)
 | 
						|
               ELSE
 | 
						|
*                 ilu=1 & A is lower
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     CALL SLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
 | 
						|
*                    trap L at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 2
 | 
						|
                     CALL SLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
 | 
						|
*                    U at A(0,1)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(0,0)
 | 
						|
                  CALL SLASSQ( K-1, A( 0+LDA ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(0,1)
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*              A is xpose
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
*                 A**T is upper
 | 
						|
                  DO J = 1, K - 2
 | 
						|
                     CALL SLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
 | 
						|
*                    U at A(0,k)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 2
 | 
						|
                     CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    k by k-1 rect. at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 2
 | 
						|
                     CALL SLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
 | 
						|
     $                            SCALE, S )
 | 
						|
*                    L at A(0,k-1)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K-1, A( 0+K*LDA ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(0,k)
 | 
						|
                  CALL SLASSQ( K, A( 0+( K-1 )*LDA ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(0,k-1)
 | 
						|
               ELSE
 | 
						|
*                 A**T is lower
 | 
						|
                  DO J = 1, K - 1
 | 
						|
                     CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    U at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = K, N - 1
 | 
						|
                     CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    k by k-1 rect. at A(0,k)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 3
 | 
						|
                     CALL SLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
 | 
						|
*                    L at A(1,0)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(0,0)
 | 
						|
                  CALL SLASSQ( K-1, A( 1 ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(1,0)
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*           n is even
 | 
						|
            IF( IFM.EQ.1 ) THEN
 | 
						|
*              A is normal
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
*                 A is upper
 | 
						|
                  DO J = 0, K - 2
 | 
						|
                     CALL SLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
 | 
						|
*                    L at A(k+1,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     CALL SLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    trap U at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K, A( K+1 ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(k+1,0)
 | 
						|
                  CALL SLASSQ( K, A( K ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(k,0)
 | 
						|
               ELSE
 | 
						|
*                 ilu=1 & A is lower
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     CALL SLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
 | 
						|
*                    trap L at A(1,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = 1, K - 1
 | 
						|
                     CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    U at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K, A( 1 ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(1,0)
 | 
						|
                  CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(0,0)
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*              A is xpose
 | 
						|
               IF( ILU.EQ.0 ) THEN
 | 
						|
*                 A**T is upper
 | 
						|
                  DO J = 1, K - 1
 | 
						|
                     CALL SLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
 | 
						|
*                    U at A(0,k+1)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 1
 | 
						|
                     CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    k by k rect. at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 2
 | 
						|
                     CALL SLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
 | 
						|
     $                            S )
 | 
						|
*                    L at A(0,k)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K, A( 0+( K+1 )*LDA ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(0,k+1)
 | 
						|
                  CALL SLASSQ( K, A( 0+K*LDA ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(0,k)
 | 
						|
               ELSE
 | 
						|
*                 A**T is lower
 | 
						|
                  DO J = 1, K - 1
 | 
						|
                     CALL SLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
 | 
						|
*                    U at A(0,1)
 | 
						|
                  END DO
 | 
						|
                  DO J = K + 1, N
 | 
						|
                     CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | 
						|
*                    k by k rect. at A(0,k+1)
 | 
						|
                  END DO
 | 
						|
                  DO J = 0, K - 2
 | 
						|
                     CALL SLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
 | 
						|
*                    L at A(0,0)
 | 
						|
                  END DO
 | 
						|
                  S = S + S
 | 
						|
*                 double s for the off diagonal elements
 | 
						|
                  CALL SLASSQ( K, A( LDA ), LDA+1, SCALE, S )
 | 
						|
*                 tri L at A(0,1)
 | 
						|
                  CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | 
						|
*                 tri U at A(0,0)
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         VALUE = SCALE*SQRT( S )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SLANSF = VALUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLANSF
 | 
						|
*
 | 
						|
      END
 |