219 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGEQRT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGEQRT + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER INFO, LDA, LDT, M, N, NB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGEQRT computes a blocked QR factorization of a real M-by-N matrix A
 | 
						|
*> using the compact WY representation of Q.  
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The block size to be used in the blocked QR.  MIN(M,N) >= NB >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the elements on and above the diagonal of the array
 | 
						|
*>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
 | 
						|
*>          upper triangular if M >= N); the elements below the diagonal
 | 
						|
*>          are the columns of V.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is DOUBLE PRECISION array, dimension (LDT,MIN(M,N))
 | 
						|
*>          The upper triangular block reflectors stored in compact form
 | 
						|
*>          as a sequence of upper triangular blocks.  See below
 | 
						|
*>          for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= NB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (NB*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2013
 | 
						|
*
 | 
						|
*> \ingroup doubleGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The matrix V stores the elementary reflectors H(i) in the i-th column
 | 
						|
*>  below the diagonal. For example, if M=5 and N=3, the matrix V is
 | 
						|
*>
 | 
						|
*>               V = (  1       )
 | 
						|
*>                   ( v1  1    )
 | 
						|
*>                   ( v1 v2  1 )
 | 
						|
*>                   ( v1 v2 v3 )
 | 
						|
*>                   ( v1 v2 v3 )
 | 
						|
*>
 | 
						|
*>  where the vi's represent the vectors which define H(i), which are returned
 | 
						|
*>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
 | 
						|
*>
 | 
						|
*>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/NB), where each
 | 
						|
*>  block is of order NB except for the last block, which is of order 
 | 
						|
*>  IB = K - (B-1)*NB.  For each of the B blocks, a upper triangular block
 | 
						|
*>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB 
 | 
						|
*>  for the last block) T's are stored in the NB-by-N matrix T as
 | 
						|
*>
 | 
						|
*>               T = (T1 T2 ... TB).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.5.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2013
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER INFO, LDA, LDT, M, N, NB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER    I, IB, IINFO, K
 | 
						|
      LOGICAL    USE_RECURSIVE_QR
 | 
						|
      PARAMETER( USE_RECURSIVE_QR=.TRUE. )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL   DGEQRT2, DGEQRT3, DLARFB, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDT.LT.NB ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGEQRT', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      K = MIN( M, N )
 | 
						|
      IF( K.EQ.0 ) RETURN
 | 
						|
*
 | 
						|
*     Blocked loop of length K
 | 
						|
*
 | 
						|
      DO I = 1, K,  NB
 | 
						|
         IB = MIN( K-I+1, NB )
 | 
						|
*     
 | 
						|
*     Compute the QR factorization of the current block A(I:M,I:I+IB-1)
 | 
						|
*
 | 
						|
         IF( USE_RECURSIVE_QR ) THEN
 | 
						|
            CALL DGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
 | 
						|
         ELSE
 | 
						|
            CALL DGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
 | 
						|
         END IF
 | 
						|
         IF( I+IB.LE.N ) THEN
 | 
						|
*
 | 
						|
*     Update by applying H**T to A(I:M,I+IB:N) from the left
 | 
						|
*
 | 
						|
            CALL DLARFB( 'L', 'T', 'F', 'C', M-I+1, N-I-IB+1, IB,
 | 
						|
     $                   A( I, I ), LDA, T( 1, I ), LDT, 
 | 
						|
     $                   A( I, I+IB ), LDA, WORK , N-I-IB+1 )
 | 
						|
         END IF
 | 
						|
      END DO
 | 
						|
      RETURN
 | 
						|
*     
 | 
						|
*     End of DGEQRT
 | 
						|
*
 | 
						|
      END
 |