302 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAROR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          INIT, SIDE
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( 4 )
 | 
						|
*       REAL               A( LDA, * ), X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAROR pre- or post-multiplies an M by N matrix A by a random
 | 
						|
*> orthogonal matrix U, overwriting A.  A may optionally be initialized
 | 
						|
*> to the identity matrix before multiplying by U.  U is generated using
 | 
						|
*> the method of G.W. Stewart (SIAM J. Numer. Anal. 17, 1980, 403-409).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          Specifies whether A is multiplied on the left or right by U.
 | 
						|
*>          = 'L':         Multiply A on the left (premultiply) by U
 | 
						|
*>          = 'R':         Multiply A on the right (postmultiply) by U'
 | 
						|
*>          = 'C' or 'T':  Multiply A on the left by U and the right
 | 
						|
*>                          by U' (Here, U' means U-transpose.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INIT
 | 
						|
*> \verbatim
 | 
						|
*>          INIT is CHARACTER*1
 | 
						|
*>          Specifies whether or not A should be initialized to the
 | 
						|
*>          identity matrix.
 | 
						|
*>          = 'I':  Initialize A to (a section of) the identity matrix
 | 
						|
*>                   before applying U.
 | 
						|
*>          = 'N':  No initialization.  Apply U to the input matrix A.
 | 
						|
*>
 | 
						|
*>          INIT = 'I' may be used to generate square or rectangular
 | 
						|
*>          orthogonal matrices:
 | 
						|
*>
 | 
						|
*>          For M = N and SIDE = 'L' or 'R', the rows will be orthogonal
 | 
						|
*>          to each other, as will the columns.
 | 
						|
*>
 | 
						|
*>          If M < N, SIDE = 'R' produces a dense matrix whose rows are
 | 
						|
*>          orthogonal and whose columns are not, while SIDE = 'L'
 | 
						|
*>          produces a matrix whose rows are orthogonal, and whose first
 | 
						|
*>          M columns are orthogonal, and whose remaining columns are
 | 
						|
*>          zero.
 | 
						|
*>
 | 
						|
*>          If M > N, SIDE = 'L' produces a dense matrix whose columns
 | 
						|
*>          are orthogonal and whose rows are not, while SIDE = 'R'
 | 
						|
*>          produces a matrix whose columns are orthogonal, and whose
 | 
						|
*>          first M rows are orthogonal, and whose remaining rows are
 | 
						|
*>          zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA, N)
 | 
						|
*>          On entry, the array A.
 | 
						|
*>          On exit, overwritten by U A ( if SIDE = 'L' ),
 | 
						|
*>           or by A U ( if SIDE = 'R' ),
 | 
						|
*>           or by U A U' ( if SIDE = 'C' or 'T').
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator. The array elements should be between 0 and 4095;
 | 
						|
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>          be odd.  The random number generator uses a linear
 | 
						|
*>          congruential sequence limited to small integers, and so
 | 
						|
*>          should produce machine independent random numbers. The
 | 
						|
*>          values of ISEED are changed on exit, and can be used in the
 | 
						|
*>          next call to SLAROR to continue the same random number
 | 
						|
*>          sequence.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (3*MAX( M, N ))
 | 
						|
*>          Workspace of length
 | 
						|
*>              2*M + N if SIDE = 'L',
 | 
						|
*>              2*N + M if SIDE = 'R',
 | 
						|
*>              3*N     if SIDE = 'C' or 'T'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          An error flag.  It is set to:
 | 
						|
*>          = 0:  normal return
 | 
						|
*>          < 0:  if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          = 1:  if the random numbers generated by SLARND are bad.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup real_matgen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          INIT, SIDE
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( 4 )
 | 
						|
      REAL               A( LDA, * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TOOSML
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
 | 
						|
     $                   TOOSML = 1.0E-20 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
 | 
						|
      REAL               FACTOR, XNORM, XNORMS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLARND, SNRM2
 | 
						|
      EXTERNAL           LSAME, SLARND, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMV, SGER, SLASET, SSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SIGN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.EQ.0 .OR. M.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      ITYPE = 0
 | 
						|
      IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
         ITYPE = 1
 | 
						|
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
         ITYPE = 2
 | 
						|
      ELSE IF( LSAME( SIDE, 'C' ) .OR. LSAME( SIDE, 'T' ) ) THEN
 | 
						|
         ITYPE = 3
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check for argument errors.
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.M ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLAROR', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 ) THEN
 | 
						|
         NXFRM = M
 | 
						|
      ELSE
 | 
						|
         NXFRM = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize A to the identity matrix if desired
 | 
						|
*
 | 
						|
      IF( LSAME( INIT, 'I' ) )
 | 
						|
     $   CALL SLASET( 'Full', M, N, ZERO, ONE, A, LDA )
 | 
						|
*
 | 
						|
*     If no rotation possible, multiply by random +/-1
 | 
						|
*
 | 
						|
*     Compute rotation by computing Householder transformations
 | 
						|
*     H(2), H(3), ..., H(nhouse)
 | 
						|
*
 | 
						|
      DO 10 J = 1, NXFRM
 | 
						|
         X( J ) = ZERO
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      DO 30 IXFRM = 2, NXFRM
 | 
						|
         KBEG = NXFRM - IXFRM + 1
 | 
						|
*
 | 
						|
*        Generate independent normal( 0, 1 ) random numbers
 | 
						|
*
 | 
						|
         DO 20 J = KBEG, NXFRM
 | 
						|
            X( J ) = SLARND( 3, ISEED )
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Generate a Householder transformation from the random vector X
 | 
						|
*
 | 
						|
         XNORM = SNRM2( IXFRM, X( KBEG ), 1 )
 | 
						|
         XNORMS = SIGN( XNORM, X( KBEG ) )
 | 
						|
         X( KBEG+NXFRM ) = SIGN( ONE, -X( KBEG ) )
 | 
						|
         FACTOR = XNORMS*( XNORMS+X( KBEG ) )
 | 
						|
         IF( ABS( FACTOR ).LT.TOOSML ) THEN
 | 
						|
            INFO = 1
 | 
						|
            CALL XERBLA( 'SLAROR', INFO )
 | 
						|
            RETURN
 | 
						|
         ELSE
 | 
						|
            FACTOR = ONE / FACTOR
 | 
						|
         END IF
 | 
						|
         X( KBEG ) = X( KBEG ) + XNORMS
 | 
						|
*
 | 
						|
*        Apply Householder transformation to A
 | 
						|
*
 | 
						|
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           Apply H(k) from the left.
 | 
						|
*
 | 
						|
            CALL SGEMV( 'T', IXFRM, N, ONE, A( KBEG, 1 ), LDA,
 | 
						|
     $                  X( KBEG ), 1, ZERO, X( 2*NXFRM+1 ), 1 )
 | 
						|
            CALL SGER( IXFRM, N, -FACTOR, X( KBEG ), 1, X( 2*NXFRM+1 ),
 | 
						|
     $                 1, A( KBEG, 1 ), LDA )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           Apply H(k) from the right.
 | 
						|
*
 | 
						|
            CALL SGEMV( 'N', M, IXFRM, ONE, A( 1, KBEG ), LDA,
 | 
						|
     $                  X( KBEG ), 1, ZERO, X( 2*NXFRM+1 ), 1 )
 | 
						|
            CALL SGER( M, IXFRM, -FACTOR, X( 2*NXFRM+1 ), 1, X( KBEG ),
 | 
						|
     $                 1, A( 1, KBEG ), LDA )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
      X( 2*NXFRM ) = SIGN( ONE, SLARND( 3, ISEED ) )
 | 
						|
*
 | 
						|
*     Scale the matrix A by D.
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 ) THEN
 | 
						|
         DO 40 IROW = 1, M
 | 
						|
            CALL SSCAL( N, X( NXFRM+IROW ), A( IROW, 1 ), LDA )
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
 | 
						|
         DO 50 JCOL = 1, N
 | 
						|
            CALL SSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAROR
 | 
						|
*
 | 
						|
      END
 |