1327 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1327 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZDRVSG
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | 
						|
*                          NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP,
 | 
						|
*                          BP, WORK, NWORK, RWORK, LRWORK, IWORK, LIWORK,
 | 
						|
*                          RESULT, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
 | 
						|
*      $                   NSIZES, NTYPES, NWORK
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | 
						|
*       DOUBLE PRECISION   D( * ), RESULT( * ), RWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), AB( LDA, * ), AP( * ),
 | 
						|
*      $                   B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
 | 
						|
*      $                   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>      ZDRVSG checks the complex Hermitian generalized eigenproblem
 | 
						|
*>      drivers.
 | 
						|
*>
 | 
						|
*>              ZHEGV computes all eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite generalized
 | 
						|
*>              eigenproblem.
 | 
						|
*>
 | 
						|
*>              ZHEGVD computes all eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite generalized
 | 
						|
*>              eigenproblem using a divide and conquer algorithm.
 | 
						|
*>
 | 
						|
*>              ZHEGVX computes selected eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite generalized
 | 
						|
*>              eigenproblem.
 | 
						|
*>
 | 
						|
*>              ZHPGV computes all eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite generalized
 | 
						|
*>              eigenproblem in packed storage.
 | 
						|
*>
 | 
						|
*>              ZHPGVD computes all eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite generalized
 | 
						|
*>              eigenproblem in packed storage using a divide and
 | 
						|
*>              conquer algorithm.
 | 
						|
*>
 | 
						|
*>              ZHPGVX computes selected eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite generalized
 | 
						|
*>              eigenproblem in packed storage.
 | 
						|
*>
 | 
						|
*>              ZHBGV computes all eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite banded
 | 
						|
*>              generalized eigenproblem.
 | 
						|
*>
 | 
						|
*>              ZHBGVD computes all eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite banded
 | 
						|
*>              generalized eigenproblem using a divide and conquer
 | 
						|
*>              algorithm.
 | 
						|
*>
 | 
						|
*>              ZHBGVX computes selected eigenvalues and, optionally,
 | 
						|
*>              eigenvectors of a complex Hermitian-definite banded
 | 
						|
*>              generalized eigenproblem.
 | 
						|
*>
 | 
						|
*>      When ZDRVSG is called, a number of matrix "sizes" ("n's") and a
 | 
						|
*>      number of matrix "types" are specified.  For each size ("n")
 | 
						|
*>      and each type of matrix, one matrix A of the given type will be
 | 
						|
*>      generated; a random well-conditioned matrix B is also generated
 | 
						|
*>      and the pair (A,B) is used to test the drivers.
 | 
						|
*>
 | 
						|
*>      For each pair (A,B), the following tests are performed:
 | 
						|
*>
 | 
						|
*>      (1) ZHEGV with ITYPE = 1 and UPLO ='U':
 | 
						|
*>
 | 
						|
*>              | A Z - B Z D | / ( |A| |Z| n ulp )
 | 
						|
*>
 | 
						|
*>      (2) as (1) but calling ZHPGV
 | 
						|
*>      (3) as (1) but calling ZHBGV
 | 
						|
*>      (4) as (1) but with UPLO = 'L'
 | 
						|
*>      (5) as (4) but calling ZHPGV
 | 
						|
*>      (6) as (4) but calling ZHBGV
 | 
						|
*>
 | 
						|
*>      (7) ZHEGV with ITYPE = 2 and UPLO ='U':
 | 
						|
*>
 | 
						|
*>              | A B Z - Z D | / ( |A| |Z| n ulp )
 | 
						|
*>
 | 
						|
*>      (8) as (7) but calling ZHPGV
 | 
						|
*>      (9) as (7) but with UPLO = 'L'
 | 
						|
*>      (10) as (9) but calling ZHPGV
 | 
						|
*>
 | 
						|
*>      (11) ZHEGV with ITYPE = 3 and UPLO ='U':
 | 
						|
*>
 | 
						|
*>              | B A Z - Z D | / ( |A| |Z| n ulp )
 | 
						|
*>
 | 
						|
*>      (12) as (11) but calling ZHPGV
 | 
						|
*>      (13) as (11) but with UPLO = 'L'
 | 
						|
*>      (14) as (13) but calling ZHPGV
 | 
						|
*>
 | 
						|
*>      ZHEGVD, ZHPGVD and ZHBGVD performed the same 14 tests.
 | 
						|
*>
 | 
						|
*>      ZHEGVX, ZHPGVX and ZHBGVX performed the above 14 tests with
 | 
						|
*>      the parameter RANGE = 'A', 'N' and 'I', respectively.
 | 
						|
*>
 | 
						|
*>      The "sizes" are specified by an array NN(1:NSIZES); the value of
 | 
						|
*>      each element NN(j) specifies one size.
 | 
						|
*>      The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | 
						|
*>      if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | 
						|
*>      This type is used for the matrix A which has half-bandwidth KA.
 | 
						|
*>      B is generated as a well-conditioned positive definite matrix
 | 
						|
*>      with half-bandwidth KB (<= KA).
 | 
						|
*>      Currently, the list of possible types for A is:
 | 
						|
*>
 | 
						|
*>      (1)  The zero matrix.
 | 
						|
*>      (2)  The identity matrix.
 | 
						|
*>
 | 
						|
*>      (3)  A diagonal matrix with evenly spaced entries
 | 
						|
*>           1, ..., ULP  and random signs.
 | 
						|
*>           (ULP = (first number larger than 1) - 1 )
 | 
						|
*>      (4)  A diagonal matrix with geometrically spaced entries
 | 
						|
*>           1, ..., ULP  and random signs.
 | 
						|
*>      (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | 
						|
*>           and random signs.
 | 
						|
*>
 | 
						|
*>      (6)  Same as (4), but multiplied by SQRT( overflow threshold )
 | 
						|
*>      (7)  Same as (4), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*>      (8)  A matrix of the form  U* D U, where U is unitary and
 | 
						|
*>           D has evenly spaced entries 1, ..., ULP with random signs
 | 
						|
*>           on the diagonal.
 | 
						|
*>
 | 
						|
*>      (9)  A matrix of the form  U* D U, where U is unitary and
 | 
						|
*>           D has geometrically spaced entries 1, ..., ULP with random
 | 
						|
*>           signs on the diagonal.
 | 
						|
*>
 | 
						|
*>      (10) A matrix of the form  U* D U, where U is unitary and
 | 
						|
*>           D has "clustered" entries 1, ULP,..., ULP with random
 | 
						|
*>           signs on the diagonal.
 | 
						|
*>
 | 
						|
*>      (11) Same as (8), but multiplied by SQRT( overflow threshold )
 | 
						|
*>      (12) Same as (8), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*>      (13) Hermitian matrix with random entries chosen from (-1,1).
 | 
						|
*>      (14) Same as (13), but multiplied by SQRT( overflow threshold )
 | 
						|
*>      (15) Same as (13), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*>      (16) Same as (8), but with KA = 1 and KB = 1
 | 
						|
*>      (17) Same as (8), but with KA = 2 and KB = 1
 | 
						|
*>      (18) Same as (8), but with KA = 2 and KB = 2
 | 
						|
*>      (19) Same as (8), but with KA = 3 and KB = 1
 | 
						|
*>      (20) Same as (8), but with KA = 3 and KB = 2
 | 
						|
*>      (21) Same as (8), but with KA = 3 and KB = 3
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \verbatim
 | 
						|
*>  NSIZES  INTEGER
 | 
						|
*>          The number of sizes of matrices to use.  If it is zero,
 | 
						|
*>          ZDRVSG does nothing.  It must be at least zero.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  NN      INTEGER array, dimension (NSIZES)
 | 
						|
*>          An array containing the sizes to be used for the matrices.
 | 
						|
*>          Zero values will be skipped.  The values must be at least
 | 
						|
*>          zero.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  NTYPES  INTEGER
 | 
						|
*>          The number of elements in DOTYPE.   If it is zero, ZDRVSG
 | 
						|
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | 
						|
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | 
						|
*>          defined, which is to use whatever matrix is in A.  This
 | 
						|
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | 
						|
*>          DOTYPE(MAXTYP+1) is .TRUE. .
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  DOTYPE  LOGICAL array, dimension (NTYPES)
 | 
						|
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | 
						|
*>          matrix of that size and of type j will be generated.
 | 
						|
*>          If NTYPES is smaller than the maximum number of types
 | 
						|
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | 
						|
*>          MAXTYP will not be generated.  If NTYPES is larger
 | 
						|
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | 
						|
*>          will be ignored.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  ISEED   INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator. The array elements should be between 0 and 4095;
 | 
						|
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>          be odd.  The random number generator uses a linear
 | 
						|
*>          congruential sequence limited to small integers, and so
 | 
						|
*>          should produce machine independent random numbers. The
 | 
						|
*>          values of ISEED are changed on exit, and can be used in the
 | 
						|
*>          next call to ZDRVSG to continue the same random number
 | 
						|
*>          sequence.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  THRESH  DOUBLE PRECISION
 | 
						|
*>          A test will count as "failed" if the "error", computed as
 | 
						|
*>          described above, exceeds THRESH.  Note that the error
 | 
						|
*>          is scaled to be O(1), so THRESH should be a reasonably
 | 
						|
*>          small multiple of 1, e.g., 10 or 100.  In particular,
 | 
						|
*>          it should not depend on the precision (single vs. double)
 | 
						|
*>          or the size of the matrix.  It must be at least zero.
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  NOUNIT  INTEGER
 | 
						|
*>          The FORTRAN unit number for printing out error messages
 | 
						|
*>          (e.g., if a routine returns IINFO not equal to 0.)
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  A       COMPLEX*16 array, dimension (LDA , max(NN))
 | 
						|
*>          Used to hold the matrix whose eigenvalues are to be
 | 
						|
*>          computed.  On exit, A contains the last matrix actually
 | 
						|
*>          used.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  LDA     INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at
 | 
						|
*>          least 1 and at least max( NN ).
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  B       COMPLEX*16 array, dimension (LDB , max(NN))
 | 
						|
*>          Used to hold the Hermitian positive definite matrix for
 | 
						|
*>          the generalized problem.
 | 
						|
*>          On exit, B contains the last matrix actually
 | 
						|
*>          used.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  LDB     INTEGER
 | 
						|
*>          The leading dimension of B.  It must be at
 | 
						|
*>          least 1 and at least max( NN ).
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  D       DOUBLE PRECISION array, dimension (max(NN))
 | 
						|
*>          The eigenvalues of A. On exit, the eigenvalues in D
 | 
						|
*>          correspond with the matrix in A.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  Z       COMPLEX*16 array, dimension (LDZ, max(NN))
 | 
						|
*>          The matrix of eigenvectors.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  LDZ     INTEGER
 | 
						|
*>          The leading dimension of ZZ.  It must be at least 1 and
 | 
						|
*>          at least max( NN ).
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  AB      COMPLEX*16 array, dimension (LDA, max(NN))
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  BB      COMPLEX*16 array, dimension (LDB, max(NN))
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  AP      COMPLEX*16 array, dimension (max(NN)**2)
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  BP      COMPLEX*16 array, dimension (max(NN)**2)
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  WORK    COMPLEX*16 array, dimension (NWORK)
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  NWORK   INTEGER
 | 
						|
*>          The number of entries in WORK.  This must be at least
 | 
						|
*>          2*N + N**2  where  N = max( NN(j), 2 ).
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  RWORK   DOUBLE PRECISION array, dimension (LRWORK)
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  LRWORK  INTEGER
 | 
						|
*>          The number of entries in RWORK.  This must be at least
 | 
						|
*>          max( 7*N, 1 + 4*N + 2*N*lg(N) + 3*N**2 ) where
 | 
						|
*>          N = max( NN(j) ) and lg( N ) = smallest integer k such
 | 
						|
*>          that 2**k >= N .
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  IWORK   INTEGER array, dimension (LIWORK))
 | 
						|
*>          Workspace.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  LIWORK  INTEGER
 | 
						|
*>          The number of entries in IWORK.  This must be at least
 | 
						|
*>          2 + 5*max( NN(j) ).
 | 
						|
*>          Not modified.
 | 
						|
*>
 | 
						|
*>  RESULT  DOUBLE PRECISION array, dimension (70)
 | 
						|
*>          The values computed by the 70 tests described above.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>  INFO    INTEGER
 | 
						|
*>          If 0, then everything ran OK.
 | 
						|
*>           -1: NSIZES < 0
 | 
						|
*>           -2: Some NN(j) < 0
 | 
						|
*>           -3: NTYPES < 0
 | 
						|
*>           -5: THRESH < 0
 | 
						|
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
 | 
						|
*>          -16: LDZ < 1 or LDZ < NMAX.
 | 
						|
*>          -21: NWORK too small.
 | 
						|
*>          -23: LRWORK too small.
 | 
						|
*>          -25: LIWORK too small.
 | 
						|
*>          If  ZLATMR, CLATMS, ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD,
 | 
						|
*>              ZHPGVD, ZHEGVX, CHPGVX, ZHBGVX returns an error code,
 | 
						|
*>              the absolute value of it is returned.
 | 
						|
*>          Modified.
 | 
						|
*>
 | 
						|
*>-----------------------------------------------------------------------
 | 
						|
*>
 | 
						|
*>       Some Local Variables and Parameters:
 | 
						|
*>       ---- ----- --------- --- ----------
 | 
						|
*>       ZERO, ONE       Real 0 and 1.
 | 
						|
*>       MAXTYP          The number of types defined.
 | 
						|
*>       NTEST           The number of tests that have been run
 | 
						|
*>                       on this matrix.
 | 
						|
*>       NTESTT          The total number of tests for this call.
 | 
						|
*>       NMAX            Largest value in NN.
 | 
						|
*>       NMATS           The number of matrices generated so far.
 | 
						|
*>       NERRS           The number of tests which have exceeded THRESH
 | 
						|
*>                       so far (computed by DLAFTS).
 | 
						|
*>       COND, IMODE     Values to be passed to the matrix generators.
 | 
						|
*>       ANORM           Norm of A; passed to matrix generators.
 | 
						|
*>
 | 
						|
*>       OVFL, UNFL      Overflow and underflow thresholds.
 | 
						|
*>       ULP, ULPINV     Finest relative precision and its inverse.
 | 
						|
*>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
 | 
						|
*>               The following four arrays decode JTYPE:
 | 
						|
*>       KTYPE(j)        The general type (1-10) for type "j".
 | 
						|
*>       KMODE(j)        The MODE value to be passed to the matrix
 | 
						|
*>                       generator for type "j".
 | 
						|
*>       KMAGN(j)        The order of magnitude ( O(1),
 | 
						|
*>                       O(overflow^(1/2) ), O(underflow^(1/2) )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
 | 
						|
     $                   NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP,
 | 
						|
     $                   BP, WORK, NWORK, RWORK, LRWORK, IWORK, LIWORK,
 | 
						|
     $                   RESULT, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, LDZ, LIWORK, LRWORK, NOUNIT,
 | 
						|
     $                   NSIZES, NTYPES, NWORK
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
 | 
						|
      DOUBLE PRECISION   D( * ), RESULT( * ), RWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), AB( LDA, * ), AP( * ),
 | 
						|
     $                   B( LDB, * ), BB( LDB, * ), BP( * ), WORK( * ),
 | 
						|
     $                   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TEN
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 )
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
      INTEGER            MAXTYP
 | 
						|
      PARAMETER          ( MAXTYP = 21 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            BADNN
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP,
 | 
						|
     $                   ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB,
 | 
						|
     $                   KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
 | 
						|
     $                   NTESTT
 | 
						|
      DOUBLE PRECISION   ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
 | 
						|
     $                   RTUNFL, ULP, ULPINV, UNFL, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
 | 
						|
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
 | 
						|
     $                   KTYPE( MAXTYP )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLARND
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DLARND
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLAFTS, DLASUM, XERBLA, ZHBGV, ZHBGVD,
 | 
						|
     $                   ZHBGVX, ZHEGV, ZHEGVD, ZHEGVX, ZHPGV, ZHPGVD,
 | 
						|
     $                   ZHPGVX, ZLACPY, ZLASET, ZLATMR, ZLATMS, ZSGT01
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 /
 | 
						|
      DATA               KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
 | 
						|
     $                   2, 3, 6*1 /
 | 
						|
      DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
 | 
						|
     $                   0, 0, 6*4 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     1)      Check for errors
 | 
						|
*
 | 
						|
      NTESTT = 0
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      BADNN = .FALSE.
 | 
						|
      NMAX = 0
 | 
						|
      DO 10 J = 1, NSIZES
 | 
						|
         NMAX = MAX( NMAX, NN( J ) )
 | 
						|
         IF( NN( J ).LT.0 )
 | 
						|
     $      BADNN = .TRUE.
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      IF( NSIZES.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( BADNN ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NTYPES.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN
 | 
						|
         INFO = -16
 | 
						|
      ELSE IF( 2*MAX( NMAX, 2 )**2.GT.NWORK ) THEN
 | 
						|
         INFO = -21
 | 
						|
      ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LRWORK ) THEN
 | 
						|
         INFO = -23
 | 
						|
      ELSE IF( 2*MAX( NMAX, 2 )**2.GT.LIWORK ) THEN
 | 
						|
         INFO = -25
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZDRVSG', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     More Important constants
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = DLAMCH( 'Overflow' )
 | 
						|
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      RTUNFL = SQRT( UNFL )
 | 
						|
      RTOVFL = SQRT( OVFL )
 | 
						|
*
 | 
						|
      DO 20 I = 1, 4
 | 
						|
         ISEED2( I ) = ISEED( I )
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Loop over sizes, types
 | 
						|
*
 | 
						|
      NERRS = 0
 | 
						|
      NMATS = 0
 | 
						|
*
 | 
						|
      DO 650 JSIZE = 1, NSIZES
 | 
						|
         N = NN( JSIZE )
 | 
						|
         ANINV = ONE / DBLE( MAX( 1, N ) )
 | 
						|
*
 | 
						|
         IF( NSIZES.NE.1 ) THEN
 | 
						|
            MTYPES = MIN( MAXTYP, NTYPES )
 | 
						|
         ELSE
 | 
						|
            MTYPES = MIN( MAXTYP+1, NTYPES )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         KA9 = 0
 | 
						|
         KB9 = 0
 | 
						|
         DO 640 JTYPE = 1, MTYPES
 | 
						|
            IF( .NOT.DOTYPE( JTYPE ) )
 | 
						|
     $         GO TO 640
 | 
						|
            NMATS = NMATS + 1
 | 
						|
            NTEST = 0
 | 
						|
*
 | 
						|
            DO 30 J = 1, 4
 | 
						|
               IOLDSD( J ) = ISEED( J )
 | 
						|
   30       CONTINUE
 | 
						|
*
 | 
						|
*           2)      Compute "A"
 | 
						|
*
 | 
						|
*                   Control parameters:
 | 
						|
*
 | 
						|
*               KMAGN  KMODE        KTYPE
 | 
						|
*           =1  O(1)   clustered 1  zero
 | 
						|
*           =2  large  clustered 2  identity
 | 
						|
*           =3  small  exponential  (none)
 | 
						|
*           =4         arithmetic   diagonal, w/ eigenvalues
 | 
						|
*           =5         random log   hermitian, w/ eigenvalues
 | 
						|
*           =6         random       (none)
 | 
						|
*           =7                      random diagonal
 | 
						|
*           =8                      random hermitian
 | 
						|
*           =9                      banded, w/ eigenvalues
 | 
						|
*
 | 
						|
            IF( MTYPES.GT.MAXTYP )
 | 
						|
     $         GO TO 90
 | 
						|
*
 | 
						|
            ITYPE = KTYPE( JTYPE )
 | 
						|
            IMODE = KMODE( JTYPE )
 | 
						|
*
 | 
						|
*           Compute norm
 | 
						|
*
 | 
						|
            GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | 
						|
*
 | 
						|
   40       CONTINUE
 | 
						|
            ANORM = ONE
 | 
						|
            GO TO 70
 | 
						|
*
 | 
						|
   50       CONTINUE
 | 
						|
            ANORM = ( RTOVFL*ULP )*ANINV
 | 
						|
            GO TO 70
 | 
						|
*
 | 
						|
   60       CONTINUE
 | 
						|
            ANORM = RTUNFL*N*ULPINV
 | 
						|
            GO TO 70
 | 
						|
*
 | 
						|
   70       CONTINUE
 | 
						|
*
 | 
						|
            IINFO = 0
 | 
						|
            COND = ULPINV
 | 
						|
*
 | 
						|
*           Special Matrices -- Identity & Jordan block
 | 
						|
*
 | 
						|
            IF( ITYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              Zero
 | 
						|
*
 | 
						|
               KA = 0
 | 
						|
               KB = 0
 | 
						|
               CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*              Identity
 | 
						|
*
 | 
						|
               KA = 0
 | 
						|
               KB = 0
 | 
						|
               CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
 | 
						|
               DO 80 JCOL = 1, N
 | 
						|
                  A( JCOL, JCOL ) = ANORM
 | 
						|
   80          CONTINUE
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal Matrix, [Eigen]values Specified
 | 
						|
*
 | 
						|
               KA = 0
 | 
						|
               KB = 0
 | 
						|
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
 | 
						|
     $                      ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.5 ) THEN
 | 
						|
*
 | 
						|
*              Hermitian, eigenvalues specified
 | 
						|
*
 | 
						|
               KA = MAX( 0, N-1 )
 | 
						|
               KB = KA
 | 
						|
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
 | 
						|
     $                      ANORM, N, N, 'N', A, LDA, WORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.7 ) THEN
 | 
						|
*
 | 
						|
*              Diagonal, random eigenvalues
 | 
						|
*
 | 
						|
               KA = 0
 | 
						|
               KB = 0
 | 
						|
               CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.8 ) THEN
 | 
						|
*
 | 
						|
*              Hermitian, random eigenvalues
 | 
						|
*
 | 
						|
               KA = MAX( 0, N-1 )
 | 
						|
               KB = KA
 | 
						|
               CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
 | 
						|
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
 | 
						|
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE IF( ITYPE.EQ.9 ) THEN
 | 
						|
*
 | 
						|
*              Hermitian banded, eigenvalues specified
 | 
						|
*
 | 
						|
*              The following values are used for the half-bandwidths:
 | 
						|
*
 | 
						|
*                ka = 1   kb = 1
 | 
						|
*                ka = 2   kb = 1
 | 
						|
*                ka = 2   kb = 2
 | 
						|
*                ka = 3   kb = 1
 | 
						|
*                ka = 3   kb = 2
 | 
						|
*                ka = 3   kb = 3
 | 
						|
*
 | 
						|
               KB9 = KB9 + 1
 | 
						|
               IF( KB9.GT.KA9 ) THEN
 | 
						|
                  KA9 = KA9 + 1
 | 
						|
                  KB9 = 1
 | 
						|
               END IF
 | 
						|
               KA = MAX( 0, MIN( N-1, KA9 ) )
 | 
						|
               KB = MAX( 0, MIN( N-1, KB9 ) )
 | 
						|
               CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
 | 
						|
     $                      ANORM, KA, KA, 'N', A, LDA, WORK, IINFO )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               IINFO = 1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( IINFO.NE.0 ) THEN
 | 
						|
               WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
 | 
						|
     $            IOLDSD
 | 
						|
               INFO = ABS( IINFO )
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
   90       CONTINUE
 | 
						|
*
 | 
						|
            ABSTOL = UNFL + UNFL
 | 
						|
            IF( N.LE.1 ) THEN
 | 
						|
               IL = 1
 | 
						|
               IU = N
 | 
						|
            ELSE
 | 
						|
               IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
 | 
						|
               IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
 | 
						|
               IF( IL.GT.IU ) THEN
 | 
						|
                  ITEMP = IL
 | 
						|
                  IL = IU
 | 
						|
                  IU = ITEMP
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           3) Call ZHEGV, ZHPGV, ZHBGV, CHEGVD, CHPGVD, CHBGVD,
 | 
						|
*              ZHEGVX, ZHPGVX and ZHBGVX, do tests.
 | 
						|
*
 | 
						|
*           loop over the three generalized problems
 | 
						|
*                 IBTYPE = 1: A*x = (lambda)*B*x
 | 
						|
*                 IBTYPE = 2: A*B*x = (lambda)*x
 | 
						|
*                 IBTYPE = 3: B*A*x = (lambda)*x
 | 
						|
*
 | 
						|
            DO 630 IBTYPE = 1, 3
 | 
						|
*
 | 
						|
*              loop over the setting UPLO
 | 
						|
*
 | 
						|
               DO 620 IBUPLO = 1, 2
 | 
						|
                  IF( IBUPLO.EQ.1 )
 | 
						|
     $               UPLO = 'U'
 | 
						|
                  IF( IBUPLO.EQ.2 )
 | 
						|
     $               UPLO = 'L'
 | 
						|
*
 | 
						|
*                 Generate random well-conditioned positive definite
 | 
						|
*                 matrix B, of bandwidth not greater than that of A.
 | 
						|
*
 | 
						|
                  CALL ZLATMS( N, N, 'U', ISEED, 'P', RWORK, 5, TEN,
 | 
						|
     $                         ONE, KB, KB, UPLO, B, LDB, WORK( N+1 ),
 | 
						|
     $                         IINFO )
 | 
						|
*
 | 
						|
*                 Test ZHEGV
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
                  CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
 | 
						|
                  CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | 
						|
*
 | 
						|
                  CALL ZHEGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
 | 
						|
     $                        WORK, NWORK, RWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHEGV(V,' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 100
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
*                 Test ZHEGVD
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
                  CALL ZLACPY( ' ', N, N, A, LDA, Z, LDZ )
 | 
						|
                  CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | 
						|
*
 | 
						|
                  CALL ZHEGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D,
 | 
						|
     $                         WORK, NWORK, RWORK, LRWORK, IWORK,
 | 
						|
     $                         LIWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHEGVD(V,' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 100
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
*                 Test ZHEGVX
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
                  CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
 | 
						|
                  CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | 
						|
*
 | 
						|
                  CALL ZHEGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB,
 | 
						|
     $                         LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
 | 
						|
     $                         LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
 | 
						|
     $                         IWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,A' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 100
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
                  CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
 | 
						|
                  CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | 
						|
*
 | 
						|
*                 since we do not know the exact eigenvalues of this
 | 
						|
*                 eigenpair, we just set VL and VU as constants.
 | 
						|
*                 It is quite possible that there are no eigenvalues
 | 
						|
*                 in this interval.
 | 
						|
*
 | 
						|
                  VL = ZERO
 | 
						|
                  VU = ANORM
 | 
						|
                  CALL ZHEGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB,
 | 
						|
     $                         LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
 | 
						|
     $                         LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
 | 
						|
     $                         IWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,V,' //
 | 
						|
     $                  UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 100
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
                  CALL ZLACPY( ' ', N, N, A, LDA, AB, LDA )
 | 
						|
                  CALL ZLACPY( UPLO, N, N, B, LDB, BB, LDB )
 | 
						|
*
 | 
						|
                  CALL ZHEGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB,
 | 
						|
     $                         LDB, VL, VU, IL, IU, ABSTOL, M, D, Z,
 | 
						|
     $                         LDZ, WORK, NWORK, RWORK, IWORK( N+1 ),
 | 
						|
     $                         IWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHEGVX(V,I,' //
 | 
						|
     $                  UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 100
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
  100             CONTINUE
 | 
						|
*
 | 
						|
*                 Test ZHPGV
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                 Copy the matrices into packed storage.
 | 
						|
*
 | 
						|
                  IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                     IJ = 1
 | 
						|
                     DO 120 J = 1, N
 | 
						|
                        DO 110 I = 1, J
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  110                   CONTINUE
 | 
						|
  120                CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     IJ = 1
 | 
						|
                     DO 140 J = 1, N
 | 
						|
                        DO 130 I = J, N
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  130                   CONTINUE
 | 
						|
  140                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  CALL ZHPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
 | 
						|
     $                        WORK, RWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHPGV(V,' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 310
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
*                 Test ZHPGVD
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                 Copy the matrices into packed storage.
 | 
						|
*
 | 
						|
                  IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                     IJ = 1
 | 
						|
                     DO 160 J = 1, N
 | 
						|
                        DO 150 I = 1, J
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  150                   CONTINUE
 | 
						|
  160                CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     IJ = 1
 | 
						|
                     DO 180 J = 1, N
 | 
						|
                        DO 170 I = J, N
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  170                   CONTINUE
 | 
						|
  180                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  CALL ZHPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ,
 | 
						|
     $                         WORK, NWORK, RWORK, LRWORK, IWORK,
 | 
						|
     $                         LIWORK, IINFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHPGVD(V,' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 310
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
*                 Test ZHPGVX
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                 Copy the matrices into packed storage.
 | 
						|
*
 | 
						|
                  IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                     IJ = 1
 | 
						|
                     DO 200 J = 1, N
 | 
						|
                        DO 190 I = 1, J
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  190                   CONTINUE
 | 
						|
  200                CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     IJ = 1
 | 
						|
                     DO 220 J = 1, N
 | 
						|
                        DO 210 I = J, N
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  210                   CONTINUE
 | 
						|
  220                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  CALL ZHPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL,
 | 
						|
     $                         VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
 | 
						|
     $                         RWORK, IWORK( N+1 ), IWORK, INFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,A' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 310
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                 Copy the matrices into packed storage.
 | 
						|
*
 | 
						|
                  IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                     IJ = 1
 | 
						|
                     DO 240 J = 1, N
 | 
						|
                        DO 230 I = 1, J
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  230                   CONTINUE
 | 
						|
  240                CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     IJ = 1
 | 
						|
                     DO 260 J = 1, N
 | 
						|
                        DO 250 I = J, N
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  250                   CONTINUE
 | 
						|
  260                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  VL = ZERO
 | 
						|
                  VU = ANORM
 | 
						|
                  CALL ZHPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL,
 | 
						|
     $                         VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
 | 
						|
     $                         RWORK, IWORK( N+1 ), IWORK, INFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,V' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 310
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                  NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                 Copy the matrices into packed storage.
 | 
						|
*
 | 
						|
                  IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                     IJ = 1
 | 
						|
                     DO 280 J = 1, N
 | 
						|
                        DO 270 I = 1, J
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  270                   CONTINUE
 | 
						|
  280                CONTINUE
 | 
						|
                  ELSE
 | 
						|
                     IJ = 1
 | 
						|
                     DO 300 J = 1, N
 | 
						|
                        DO 290 I = J, N
 | 
						|
                           AP( IJ ) = A( I, J )
 | 
						|
                           BP( IJ ) = B( I, J )
 | 
						|
                           IJ = IJ + 1
 | 
						|
  290                   CONTINUE
 | 
						|
  300                CONTINUE
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  CALL ZHPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL,
 | 
						|
     $                         VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK,
 | 
						|
     $                         RWORK, IWORK( N+1 ), IWORK, INFO )
 | 
						|
                  IF( IINFO.NE.0 ) THEN
 | 
						|
                     WRITE( NOUNIT, FMT = 9999 )'ZHPGVX(V,I' // UPLO //
 | 
						|
     $                  ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                     INFO = ABS( IINFO )
 | 
						|
                     IF( IINFO.LT.0 ) THEN
 | 
						|
                        RETURN
 | 
						|
                     ELSE
 | 
						|
                        RESULT( NTEST ) = ULPINV
 | 
						|
                        GO TO 310
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Do Test
 | 
						|
*
 | 
						|
                  CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | 
						|
     $                         LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
  310             CONTINUE
 | 
						|
*
 | 
						|
                  IF( IBTYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                    TEST ZHBGV
 | 
						|
*
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                    Copy the matrices into band storage.
 | 
						|
*
 | 
						|
                     IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                        DO 340 J = 1, N
 | 
						|
                           DO 320 I = MAX( 1, J-KA ), J
 | 
						|
                              AB( KA+1+I-J, J ) = A( I, J )
 | 
						|
  320                      CONTINUE
 | 
						|
                           DO 330 I = MAX( 1, J-KB ), J
 | 
						|
                              BB( KB+1+I-J, J ) = B( I, J )
 | 
						|
  330                      CONTINUE
 | 
						|
  340                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 370 J = 1, N
 | 
						|
                           DO 350 I = J, MIN( N, J+KA )
 | 
						|
                              AB( 1+I-J, J ) = A( I, J )
 | 
						|
  350                      CONTINUE
 | 
						|
                           DO 360 I = J, MIN( N, J+KB )
 | 
						|
                              BB( 1+I-J, J ) = B( I, J )
 | 
						|
  360                      CONTINUE
 | 
						|
  370                   CONTINUE
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     CALL ZHBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB,
 | 
						|
     $                           D, Z, LDZ, WORK, RWORK, IINFO )
 | 
						|
                     IF( IINFO.NE.0 ) THEN
 | 
						|
                        WRITE( NOUNIT, FMT = 9999 )'ZHBGV(V,' //
 | 
						|
     $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                        INFO = ABS( IINFO )
 | 
						|
                        IF( IINFO.LT.0 ) THEN
 | 
						|
                           RETURN
 | 
						|
                        ELSE
 | 
						|
                           RESULT( NTEST ) = ULPINV
 | 
						|
                           GO TO 620
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Do Test
 | 
						|
*
 | 
						|
                     CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                            LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
*                    TEST ZHBGVD
 | 
						|
*
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                    Copy the matrices into band storage.
 | 
						|
*
 | 
						|
                     IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                        DO 400 J = 1, N
 | 
						|
                           DO 380 I = MAX( 1, J-KA ), J
 | 
						|
                              AB( KA+1+I-J, J ) = A( I, J )
 | 
						|
  380                      CONTINUE
 | 
						|
                           DO 390 I = MAX( 1, J-KB ), J
 | 
						|
                              BB( KB+1+I-J, J ) = B( I, J )
 | 
						|
  390                      CONTINUE
 | 
						|
  400                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 430 J = 1, N
 | 
						|
                           DO 410 I = J, MIN( N, J+KA )
 | 
						|
                              AB( 1+I-J, J ) = A( I, J )
 | 
						|
  410                      CONTINUE
 | 
						|
                           DO 420 I = J, MIN( N, J+KB )
 | 
						|
                              BB( 1+I-J, J ) = B( I, J )
 | 
						|
  420                      CONTINUE
 | 
						|
  430                   CONTINUE
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     CALL ZHBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB,
 | 
						|
     $                            LDB, D, Z, LDZ, WORK, NWORK, RWORK,
 | 
						|
     $                            LRWORK, IWORK, LIWORK, IINFO )
 | 
						|
                     IF( IINFO.NE.0 ) THEN
 | 
						|
                        WRITE( NOUNIT, FMT = 9999 )'ZHBGVD(V,' //
 | 
						|
     $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                        INFO = ABS( IINFO )
 | 
						|
                        IF( IINFO.LT.0 ) THEN
 | 
						|
                           RETURN
 | 
						|
                        ELSE
 | 
						|
                           RESULT( NTEST ) = ULPINV
 | 
						|
                           GO TO 620
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Do Test
 | 
						|
*
 | 
						|
                     CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                            LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
*                    Test ZHBGVX
 | 
						|
*
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                    Copy the matrices into band storage.
 | 
						|
*
 | 
						|
                     IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                        DO 460 J = 1, N
 | 
						|
                           DO 440 I = MAX( 1, J-KA ), J
 | 
						|
                              AB( KA+1+I-J, J ) = A( I, J )
 | 
						|
  440                      CONTINUE
 | 
						|
                           DO 450 I = MAX( 1, J-KB ), J
 | 
						|
                              BB( KB+1+I-J, J ) = B( I, J )
 | 
						|
  450                      CONTINUE
 | 
						|
  460                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 490 J = 1, N
 | 
						|
                           DO 470 I = J, MIN( N, J+KA )
 | 
						|
                              AB( 1+I-J, J ) = A( I, J )
 | 
						|
  470                      CONTINUE
 | 
						|
                           DO 480 I = J, MIN( N, J+KB )
 | 
						|
                              BB( 1+I-J, J ) = B( I, J )
 | 
						|
  480                      CONTINUE
 | 
						|
  490                   CONTINUE
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     CALL ZHBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA,
 | 
						|
     $                            BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
 | 
						|
     $                            IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
 | 
						|
     $                            IWORK( N+1 ), IWORK, IINFO )
 | 
						|
                     IF( IINFO.NE.0 ) THEN
 | 
						|
                        WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,A' //
 | 
						|
     $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                        INFO = ABS( IINFO )
 | 
						|
                        IF( IINFO.LT.0 ) THEN
 | 
						|
                           RETURN
 | 
						|
                        ELSE
 | 
						|
                           RESULT( NTEST ) = ULPINV
 | 
						|
                           GO TO 620
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Do Test
 | 
						|
*
 | 
						|
                     CALL ZSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z,
 | 
						|
     $                            LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                    Copy the matrices into band storage.
 | 
						|
*
 | 
						|
                     IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                        DO 520 J = 1, N
 | 
						|
                           DO 500 I = MAX( 1, J-KA ), J
 | 
						|
                              AB( KA+1+I-J, J ) = A( I, J )
 | 
						|
  500                      CONTINUE
 | 
						|
                           DO 510 I = MAX( 1, J-KB ), J
 | 
						|
                              BB( KB+1+I-J, J ) = B( I, J )
 | 
						|
  510                      CONTINUE
 | 
						|
  520                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 550 J = 1, N
 | 
						|
                           DO 530 I = J, MIN( N, J+KA )
 | 
						|
                              AB( 1+I-J, J ) = A( I, J )
 | 
						|
  530                      CONTINUE
 | 
						|
                           DO 540 I = J, MIN( N, J+KB )
 | 
						|
                              BB( 1+I-J, J ) = B( I, J )
 | 
						|
  540                      CONTINUE
 | 
						|
  550                   CONTINUE
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     VL = ZERO
 | 
						|
                     VU = ANORM
 | 
						|
                     CALL ZHBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA,
 | 
						|
     $                            BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
 | 
						|
     $                            IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
 | 
						|
     $                            IWORK( N+1 ), IWORK, IINFO )
 | 
						|
                     IF( IINFO.NE.0 ) THEN
 | 
						|
                        WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,V' //
 | 
						|
     $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                        INFO = ABS( IINFO )
 | 
						|
                        IF( IINFO.LT.0 ) THEN
 | 
						|
                           RETURN
 | 
						|
                        ELSE
 | 
						|
                           RESULT( NTEST ) = ULPINV
 | 
						|
                           GO TO 620
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Do Test
 | 
						|
*
 | 
						|
                     CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | 
						|
     $                            LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                     NTEST = NTEST + 1
 | 
						|
*
 | 
						|
*                    Copy the matrices into band storage.
 | 
						|
*
 | 
						|
                     IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
                        DO 580 J = 1, N
 | 
						|
                           DO 560 I = MAX( 1, J-KA ), J
 | 
						|
                              AB( KA+1+I-J, J ) = A( I, J )
 | 
						|
  560                      CONTINUE
 | 
						|
                           DO 570 I = MAX( 1, J-KB ), J
 | 
						|
                              BB( KB+1+I-J, J ) = B( I, J )
 | 
						|
  570                      CONTINUE
 | 
						|
  580                   CONTINUE
 | 
						|
                     ELSE
 | 
						|
                        DO 610 J = 1, N
 | 
						|
                           DO 590 I = J, MIN( N, J+KA )
 | 
						|
                              AB( 1+I-J, J ) = A( I, J )
 | 
						|
  590                      CONTINUE
 | 
						|
                           DO 600 I = J, MIN( N, J+KB )
 | 
						|
                              BB( 1+I-J, J ) = B( I, J )
 | 
						|
  600                      CONTINUE
 | 
						|
  610                   CONTINUE
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     CALL ZHBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA,
 | 
						|
     $                            BB, LDB, BP, MAX( 1, N ), VL, VU, IL,
 | 
						|
     $                            IU, ABSTOL, M, D, Z, LDZ, WORK, RWORK,
 | 
						|
     $                            IWORK( N+1 ), IWORK, IINFO )
 | 
						|
                     IF( IINFO.NE.0 ) THEN
 | 
						|
                        WRITE( NOUNIT, FMT = 9999 )'ZHBGVX(V,I' //
 | 
						|
     $                     UPLO // ')', IINFO, N, JTYPE, IOLDSD
 | 
						|
                        INFO = ABS( IINFO )
 | 
						|
                        IF( IINFO.LT.0 ) THEN
 | 
						|
                           RETURN
 | 
						|
                        ELSE
 | 
						|
                           RESULT( NTEST ) = ULPINV
 | 
						|
                           GO TO 620
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Do Test
 | 
						|
*
 | 
						|
                     CALL ZSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z,
 | 
						|
     $                            LDZ, D, WORK, RWORK, RESULT( NTEST ) )
 | 
						|
*
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
  620          CONTINUE
 | 
						|
  630       CONTINUE
 | 
						|
*
 | 
						|
*           End of Loop -- Check for RESULT(j) > THRESH
 | 
						|
*
 | 
						|
            NTESTT = NTESTT + NTEST
 | 
						|
            CALL DLAFTS( 'ZSG', N, N, JTYPE, NTEST, RESULT, IOLDSD,
 | 
						|
     $                   THRESH, NOUNIT, NERRS )
 | 
						|
  640    CONTINUE
 | 
						|
  650 CONTINUE
 | 
						|
*
 | 
						|
*     Summary
 | 
						|
*
 | 
						|
      CALL DLASUM( 'ZSG', NOUNIT, NERRS, NTESTT )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
 9999 FORMAT( ' ZDRVSG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
 | 
						|
     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
 | 
						|
*
 | 
						|
*     End of ZDRVSG
 | 
						|
*
 | 
						|
      END
 |