227 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SORT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          ROWCOL
 | 
						|
*       INTEGER            LDU, LWORK, M, N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               U( LDU, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SORT01 checks that the matrix U is orthogonal by computing the ratio
 | 
						|
*>
 | 
						|
*>    RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
 | 
						|
*> or
 | 
						|
*>    RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
 | 
						|
*>
 | 
						|
*> Alternatively, if there isn't sufficient workspace to form
 | 
						|
*> I - U*U' or I - U'*U, the ratio is computed as
 | 
						|
*>
 | 
						|
*>    RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
 | 
						|
*> or
 | 
						|
*>    RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
 | 
						|
*>
 | 
						|
*> where EPS is the machine precision.  ROWCOL is used only if m = n;
 | 
						|
*> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
 | 
						|
*> assumed to be 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ROWCOL
 | 
						|
*> \verbatim
 | 
						|
*>          ROWCOL is CHARACTER
 | 
						|
*>          Specifies whether the rows or columns of U should be checked
 | 
						|
*>          for orthogonality.  Used only if M = N.
 | 
						|
*>          = 'R':  Check for orthogonal rows of U
 | 
						|
*>          = 'C':  Check for orthogonal columns of U
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is REAL array, dimension (LDU,N)
 | 
						|
*>          The orthogonal matrix U.  U is checked for orthogonal columns
 | 
						|
*>          if m > n or if m = n and ROWCOL = 'C'.  U is checked for
 | 
						|
*>          orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of the array U.  LDU >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  For best performance, LWORK
 | 
						|
*>          should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if
 | 
						|
*>          ROWCOL = 'R', but the test will be done even if LWORK is 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
 | 
						|
*>          RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup single_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SORT01( ROWCOL, M, N, U, LDU, WORK, LWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          ROWCOL
 | 
						|
      INTEGER            LDU, LWORK, M, N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               U( LDU, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          TRANSU
 | 
						|
      INTEGER            I, J, K, LDWORK, MNMIN
 | 
						|
      REAL               EPS, TMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SDOT, SLAMCH, SLANSY
 | 
						|
      EXTERNAL           LSAME, SDOT, SLAMCH, SLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLASET, SSYRK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
      IF( M.LT.N .OR. ( M.EQ.N .AND. LSAME( ROWCOL, 'R' ) ) ) THEN
 | 
						|
         TRANSU = 'N'
 | 
						|
         K = N
 | 
						|
      ELSE
 | 
						|
         TRANSU = 'T'
 | 
						|
         K = M
 | 
						|
      END IF
 | 
						|
      MNMIN = MIN( M, N )
 | 
						|
*
 | 
						|
      IF( ( MNMIN+1 )*MNMIN.LE.LWORK ) THEN
 | 
						|
         LDWORK = MNMIN
 | 
						|
      ELSE
 | 
						|
         LDWORK = 0
 | 
						|
      END IF
 | 
						|
      IF( LDWORK.GT.0 ) THEN
 | 
						|
*
 | 
						|
*        Compute I - U*U' or I - U'*U.
 | 
						|
*
 | 
						|
         CALL SLASET( 'Upper', MNMIN, MNMIN, ZERO, ONE, WORK, LDWORK )
 | 
						|
         CALL SSYRK( 'Upper', TRANSU, MNMIN, K, -ONE, U, LDU, ONE, WORK,
 | 
						|
     $               LDWORK )
 | 
						|
*
 | 
						|
*        Compute norm( I - U*U' ) / ( K * EPS ) .
 | 
						|
*
 | 
						|
         RESID = SLANSY( '1', 'Upper', MNMIN, WORK, LDWORK,
 | 
						|
     $           WORK( LDWORK*MNMIN+1 ) )
 | 
						|
         RESID = ( RESID / REAL( K ) ) / EPS
 | 
						|
      ELSE IF( TRANSU.EQ.'T' ) THEN
 | 
						|
*
 | 
						|
*        Find the maximum element in abs( I - U'*U ) / ( m * EPS )
 | 
						|
*
 | 
						|
         DO 20 J = 1, N
 | 
						|
            DO 10 I = 1, J
 | 
						|
               IF( I.NE.J ) THEN
 | 
						|
                  TMP = ZERO
 | 
						|
               ELSE
 | 
						|
                  TMP = ONE
 | 
						|
               END IF
 | 
						|
               TMP = TMP - SDOT( M, U( 1, I ), 1, U( 1, J ), 1 )
 | 
						|
               RESID = MAX( RESID, ABS( TMP ) )
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
         RESID = ( RESID / REAL( M ) ) / EPS
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Find the maximum element in abs( I - U*U' ) / ( n * EPS )
 | 
						|
*
 | 
						|
         DO 40 J = 1, M
 | 
						|
            DO 30 I = 1, J
 | 
						|
               IF( I.NE.J ) THEN
 | 
						|
                  TMP = ZERO
 | 
						|
               ELSE
 | 
						|
                  TMP = ONE
 | 
						|
               END IF
 | 
						|
               TMP = TMP - SDOT( N, U( J, 1 ), LDU, U( I, 1 ), LDU )
 | 
						|
               RESID = MAX( RESID, ABS( TMP ) )
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
         RESID = ( RESID / REAL( N ) ) / EPS
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SORT01
 | 
						|
*
 | 
						|
      END
 |