212 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DSVDCT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DSVDCT( N, S, E, SHIFT, NUM )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            N, NUM
 | 
						|
*       DOUBLE PRECISION   SHIFT
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   E( * ), S( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DSVDCT counts the number NUM of eigenvalues of a 2*N by 2*N
 | 
						|
*> tridiagonal matrix T which are less than or equal to SHIFT.  T is
 | 
						|
*> formed by putting zeros on the diagonal and making the off-diagonals
 | 
						|
*> equal to S(1), E(1), S(2), E(2), ... , E(N-1), S(N).  If SHIFT is
 | 
						|
*> positive, NUM is equal to N plus the number of singular values of a
 | 
						|
*> bidiagonal matrix B less than or equal to SHIFT.  Here B has diagonal
 | 
						|
*> entries S(1), ..., S(N) and superdiagonal entries E(1), ... E(N-1).
 | 
						|
*> If SHIFT is negative, NUM is equal to the number of singular values
 | 
						|
*> of B greater than or equal to -SHIFT.
 | 
						|
*>
 | 
						|
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
 | 
						|
*> Matrix", Report CS41, Computer Science Dept., Stanford University,
 | 
						|
*> July 21, 1966
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The dimension of the bidiagonal matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The diagonal entries of the bidiagonal matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array of dimension (N-1)
 | 
						|
*>          The superdiagonal entries of the bidiagonal matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SHIFT
 | 
						|
*> \verbatim
 | 
						|
*>          SHIFT is DOUBLE PRECISION
 | 
						|
*>          The shift, used as described under Purpose.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] NUM
 | 
						|
*> \verbatim
 | 
						|
*>          NUM is INTEGER
 | 
						|
*>          The number of eigenvalues of T less than or equal to SHIFT.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DSVDCT( N, S, E, SHIFT, NUM )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            N, NUM
 | 
						|
      DOUBLE PRECISION   SHIFT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   E( * ), S( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D0 )
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      DOUBLE PRECISION   M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP,
 | 
						|
     $                   TOM, U, UNFL
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      UNFL = 2*DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
*
 | 
						|
*     Find largest entry
 | 
						|
*
 | 
						|
      MX = ABS( S( 1 ) )
 | 
						|
      DO 10 I = 1, N - 1
 | 
						|
         MX = MAX( MX, ABS( S( I+1 ) ), ABS( E( I ) ) )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      IF( MX.EQ.ZERO ) THEN
 | 
						|
         IF( SHIFT.LT.ZERO ) THEN
 | 
						|
            NUM = 0
 | 
						|
         ELSE
 | 
						|
            NUM = 2*N
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute scale factors as in Kahan's report
 | 
						|
*
 | 
						|
      SUN = SQRT( UNFL )
 | 
						|
      SSUN = SQRT( SUN )
 | 
						|
      SOV = SQRT( OVFL )
 | 
						|
      TOM = SSUN*SOV
 | 
						|
      IF( MX.LE.ONE ) THEN
 | 
						|
         M1 = ONE / MX
 | 
						|
         M2 = TOM
 | 
						|
      ELSE
 | 
						|
         M1 = ONE
 | 
						|
         M2 = TOM / MX
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Begin counting
 | 
						|
*
 | 
						|
      U = ONE
 | 
						|
      NUM = 0
 | 
						|
      SSHIFT = ( SHIFT*M1 )*M2
 | 
						|
      U = -SSHIFT
 | 
						|
      IF( U.LE.SUN ) THEN
 | 
						|
         IF( U.LE.ZERO ) THEN
 | 
						|
            NUM = NUM + 1
 | 
						|
            IF( U.GT.-SUN )
 | 
						|
     $         U = -SUN
 | 
						|
         ELSE
 | 
						|
            U = SUN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      TMP = ( S( 1 )*M1 )*M2
 | 
						|
      U = -TMP*( TMP / U ) - SSHIFT
 | 
						|
      IF( U.LE.SUN ) THEN
 | 
						|
         IF( U.LE.ZERO ) THEN
 | 
						|
            NUM = NUM + 1
 | 
						|
            IF( U.GT.-SUN )
 | 
						|
     $         U = -SUN
 | 
						|
         ELSE
 | 
						|
            U = SUN
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      DO 20 I = 1, N - 1
 | 
						|
         TMP = ( E( I )*M1 )*M2
 | 
						|
         U = -TMP*( TMP / U ) - SSHIFT
 | 
						|
         IF( U.LE.SUN ) THEN
 | 
						|
            IF( U.LE.ZERO ) THEN
 | 
						|
               NUM = NUM + 1
 | 
						|
               IF( U.GT.-SUN )
 | 
						|
     $            U = -SUN
 | 
						|
            ELSE
 | 
						|
               U = SUN
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         TMP = ( S( I+1 )*M1 )*M2
 | 
						|
         U = -TMP*( TMP / U ) - SSHIFT
 | 
						|
         IF( U.LE.SUN ) THEN
 | 
						|
            IF( U.LE.ZERO ) THEN
 | 
						|
               NUM = NUM + 1
 | 
						|
               IF( U.GT.-SUN )
 | 
						|
     $            U = -SUN
 | 
						|
            ELSE
 | 
						|
               U = SUN
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DSVDCT
 | 
						|
*
 | 
						|
      END
 |