441 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			441 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by sbdsdc.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLASD6 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd6.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd6.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd6.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
 | 
						|
*                          IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
 | 
						|
*                          LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
 | 
						|
*                          IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
 | 
						|
*      $                   NR, SQRE
 | 
						|
*       REAL               ALPHA, BETA, C, S
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
 | 
						|
*      $                   PERM( * )
 | 
						|
*       REAL               D( * ), DIFL( * ), DIFR( * ),
 | 
						|
*      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
 | 
						|
*      $                   VF( * ), VL( * ), WORK( * ), Z( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLASD6 computes the SVD of an updated upper bidiagonal matrix B
 | 
						|
*> obtained by merging two smaller ones by appending a row. This
 | 
						|
*> routine is used only for the problem which requires all singular
 | 
						|
*> values and optionally singular vector matrices in factored form.
 | 
						|
*> B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
 | 
						|
*> A related subroutine, SLASD1, handles the case in which all singular
 | 
						|
*> values and singular vectors of the bidiagonal matrix are desired.
 | 
						|
*>
 | 
						|
*> SLASD6 computes the SVD as follows:
 | 
						|
*>
 | 
						|
*>               ( D1(in)    0    0       0 )
 | 
						|
*>   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
 | 
						|
*>               (   0       0   D2(in)   0 )
 | 
						|
*>
 | 
						|
*>     = U(out) * ( D(out) 0) * VT(out)
 | 
						|
*>
 | 
						|
*> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
 | 
						|
*> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
 | 
						|
*> elsewhere; and the entry b is empty if SQRE = 0.
 | 
						|
*>
 | 
						|
*> The singular values of B can be computed using D1, D2, the first
 | 
						|
*> components of all the right singular vectors of the lower block, and
 | 
						|
*> the last components of all the right singular vectors of the upper
 | 
						|
*> block. These components are stored and updated in VF and VL,
 | 
						|
*> respectively, in SLASD6. Hence U and VT are not explicitly
 | 
						|
*> referenced.
 | 
						|
*>
 | 
						|
*> The singular values are stored in D. The algorithm consists of two
 | 
						|
*> stages:
 | 
						|
*>
 | 
						|
*>       The first stage consists of deflating the size of the problem
 | 
						|
*>       when there are multiple singular values or if there is a zero
 | 
						|
*>       in the Z vector. For each such occurrence the dimension of the
 | 
						|
*>       secular equation problem is reduced by one. This stage is
 | 
						|
*>       performed by the routine SLASD7.
 | 
						|
*>
 | 
						|
*>       The second stage consists of calculating the updated
 | 
						|
*>       singular values. This is done by finding the roots of the
 | 
						|
*>       secular equation via the routine SLASD4 (as called by SLASD8).
 | 
						|
*>       This routine also updates VF and VL and computes the distances
 | 
						|
*>       between the updated singular values and the old singular
 | 
						|
*>       values.
 | 
						|
*>
 | 
						|
*> SLASD6 is called from SLASDA.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ICOMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          ICOMPQ is INTEGER
 | 
						|
*>         Specifies whether singular vectors are to be computed in
 | 
						|
*>         factored form:
 | 
						|
*>         = 0: Compute singular values only.
 | 
						|
*>         = 1: Compute singular vectors in factored form as well.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NL
 | 
						|
*> \verbatim
 | 
						|
*>          NL is INTEGER
 | 
						|
*>         The row dimension of the upper block.  NL >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NR
 | 
						|
*> \verbatim
 | 
						|
*>          NR is INTEGER
 | 
						|
*>         The row dimension of the lower block.  NR >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SQRE
 | 
						|
*> \verbatim
 | 
						|
*>          SQRE is INTEGER
 | 
						|
*>         = 0: the lower block is an NR-by-NR square matrix.
 | 
						|
*>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
 | 
						|
*>
 | 
						|
*>         The bidiagonal matrix has row dimension N = NL + NR + 1,
 | 
						|
*>         and column dimension M = N + SQRE.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (NL+NR+1).
 | 
						|
*>         On entry D(1:NL,1:NL) contains the singular values of the
 | 
						|
*>         upper block, and D(NL+2:N) contains the singular values
 | 
						|
*>         of the lower block. On exit D(1:N) contains the singular
 | 
						|
*>         values of the modified matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VF
 | 
						|
*> \verbatim
 | 
						|
*>          VF is REAL array, dimension (M)
 | 
						|
*>         On entry, VF(1:NL+1) contains the first components of all
 | 
						|
*>         right singular vectors of the upper block; and VF(NL+2:M)
 | 
						|
*>         contains the first components of all right singular vectors
 | 
						|
*>         of the lower block. On exit, VF contains the first components
 | 
						|
*>         of all right singular vectors of the bidiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is REAL array, dimension (M)
 | 
						|
*>         On entry, VL(1:NL+1) contains the  last components of all
 | 
						|
*>         right singular vectors of the upper block; and VL(NL+2:M)
 | 
						|
*>         contains the last components of all right singular vectors of
 | 
						|
*>         the lower block. On exit, VL contains the last components of
 | 
						|
*>         all right singular vectors of the bidiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is REAL
 | 
						|
*>         Contains the diagonal element associated with the added row.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL
 | 
						|
*>         Contains the off-diagonal element associated with the added
 | 
						|
*>         row.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] IDXQ
 | 
						|
*> \verbatim
 | 
						|
*>          IDXQ is INTEGER array, dimension (N)
 | 
						|
*>         This contains the permutation which will reintegrate the
 | 
						|
*>         subproblem just solved back into sorted order, i.e.
 | 
						|
*>         D( IDXQ( I = 1, N ) ) will be in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PERM
 | 
						|
*> \verbatim
 | 
						|
*>          PERM is INTEGER array, dimension ( N )
 | 
						|
*>         The permutations (from deflation and sorting) to be applied
 | 
						|
*>         to each block. Not referenced if ICOMPQ = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] GIVPTR
 | 
						|
*> \verbatim
 | 
						|
*>          GIVPTR is INTEGER
 | 
						|
*>         The number of Givens rotations which took place in this
 | 
						|
*>         subproblem. Not referenced if ICOMPQ = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] GIVCOL
 | 
						|
*> \verbatim
 | 
						|
*>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
 | 
						|
*>         Each pair of numbers indicates a pair of columns to take place
 | 
						|
*>         in a Givens rotation. Not referenced if ICOMPQ = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDGCOL
 | 
						|
*> \verbatim
 | 
						|
*>          LDGCOL is INTEGER
 | 
						|
*>         leading dimension of GIVCOL, must be at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] GIVNUM
 | 
						|
*> \verbatim
 | 
						|
*>          GIVNUM is REAL array, dimension ( LDGNUM, 2 )
 | 
						|
*>         Each number indicates the C or S value to be used in the
 | 
						|
*>         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDGNUM
 | 
						|
*> \verbatim
 | 
						|
*>          LDGNUM is INTEGER
 | 
						|
*>         The leading dimension of GIVNUM and POLES, must be at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] POLES
 | 
						|
*> \verbatim
 | 
						|
*>          POLES is REAL array, dimension ( LDGNUM, 2 )
 | 
						|
*>         On exit, POLES(1,*) is an array containing the new singular
 | 
						|
*>         values obtained from solving the secular equation, and
 | 
						|
*>         POLES(2,*) is an array containing the poles in the secular
 | 
						|
*>         equation. Not referenced if ICOMPQ = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIFL
 | 
						|
*> \verbatim
 | 
						|
*>          DIFL is REAL array, dimension ( N )
 | 
						|
*>         On exit, DIFL(I) is the distance between I-th updated
 | 
						|
*>         (undeflated) singular value and the I-th (undeflated) old
 | 
						|
*>         singular value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIFR
 | 
						|
*> \verbatim
 | 
						|
*>          DIFR is REAL array,
 | 
						|
*>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
 | 
						|
*>                   dimension ( K ) if ICOMPQ = 0.
 | 
						|
*>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
 | 
						|
*>          defined and will not be referenced.
 | 
						|
*>
 | 
						|
*>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
 | 
						|
*>          normalizing factors for the right singular vector matrix.
 | 
						|
*>
 | 
						|
*>         See SLASD8 for details on DIFL and DIFR.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension ( M )
 | 
						|
*>         The first elements of this array contain the components
 | 
						|
*>         of the deflation-adjusted updating row vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>         Contains the dimension of the non-deflated matrix,
 | 
						|
*>         This is the order of the related secular equation. 1 <= K <=N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL
 | 
						|
*>         C contains garbage if SQRE =0 and the C-value of a Givens
 | 
						|
*>         rotation related to the right null space if SQRE = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL
 | 
						|
*>         S contains garbage if SQRE =0 and the S-value of a Givens
 | 
						|
*>         rotation related to the right null space if SQRE = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension ( 4 * M )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension ( 3 * N )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = 1, a singular value did not converge
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Ming Gu and Huan Ren, Computer Science Division, University of
 | 
						|
*>     California at Berkeley, USA
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
 | 
						|
     $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
 | 
						|
     $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
 | 
						|
     $                   IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
 | 
						|
     $                   NR, SQRE
 | 
						|
      REAL               ALPHA, BETA, C, S
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
 | 
						|
     $                   PERM( * )
 | 
						|
      REAL               D( * ), DIFL( * ), DIFR( * ),
 | 
						|
     $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
 | 
						|
     $                   VF( * ), VL( * ), WORK( * ), Z( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
 | 
						|
     $                   N, N1, N2
 | 
						|
      REAL               ORGNRM
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SLAMRG, SLASCL, SLASD7, SLASD8, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      N = NL + NR + 1
 | 
						|
      M = N + SQRE
 | 
						|
*
 | 
						|
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( NL.LT.1 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NR.LT.1 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDGCOL.LT.N ) THEN
 | 
						|
         INFO = -14
 | 
						|
      ELSE IF( LDGNUM.LT.N ) THEN
 | 
						|
         INFO = -16
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLASD6', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     The following values are for bookkeeping purposes only.  They are
 | 
						|
*     integer pointers which indicate the portion of the workspace
 | 
						|
*     used by a particular array in SLASD7 and SLASD8.
 | 
						|
*
 | 
						|
      ISIGMA = 1
 | 
						|
      IW = ISIGMA + N
 | 
						|
      IVFW = IW + M
 | 
						|
      IVLW = IVFW + M
 | 
						|
*
 | 
						|
      IDX = 1
 | 
						|
      IDXC = IDX + N
 | 
						|
      IDXP = IDXC + N
 | 
						|
*
 | 
						|
*     Scale.
 | 
						|
*
 | 
						|
      ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
 | 
						|
      D( NL+1 ) = ZERO
 | 
						|
      DO 10 I = 1, N
 | 
						|
         IF( ABS( D( I ) ).GT.ORGNRM ) THEN
 | 
						|
            ORGNRM = ABS( D( I ) )
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
 | 
						|
      ALPHA = ALPHA / ORGNRM
 | 
						|
      BETA = BETA / ORGNRM
 | 
						|
*
 | 
						|
*     Sort and Deflate singular values.
 | 
						|
*
 | 
						|
      CALL SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
 | 
						|
     $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
 | 
						|
     $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
 | 
						|
     $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
 | 
						|
     $             INFO )
 | 
						|
*
 | 
						|
*     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
 | 
						|
*
 | 
						|
      CALL SLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
 | 
						|
     $             WORK( ISIGMA ), WORK( IW ), INFO )
 | 
						|
*
 | 
						|
*     Report the possible convergence failure.
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Save the poles if ICOMPQ = 1.
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         CALL SCOPY( K, D, 1, POLES( 1, 1 ), 1 )
 | 
						|
         CALL SCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Unscale.
 | 
						|
*
 | 
						|
      CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | 
						|
*
 | 
						|
*     Prepare the IDXQ sorting permutation.
 | 
						|
*
 | 
						|
      N1 = K
 | 
						|
      N2 = N - K
 | 
						|
      CALL SLAMRG( N1, N2, D, 1, -1, IDXQ )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLASD6
 | 
						|
*
 | 
						|
      END
 |