321 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLARZB applies a block reflector or its transpose to a general matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLARZB + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarzb.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarzb.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarzb.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
 | 
						|
*                          LDV, T, LDT, C, LDC, WORK, LDWORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIRECT, SIDE, STOREV, TRANS
 | 
						|
*       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               C( LDC, * ), T( LDT, * ), V( LDV, * ),
 | 
						|
*      $                   WORK( LDWORK, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLARZB applies a real block reflector H or its transpose H**T to
 | 
						|
*> a real distributed M-by-N  C from the left or the right.
 | 
						|
*>
 | 
						|
*> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply H or H**T from the Left
 | 
						|
*>          = 'R': apply H or H**T from the Right
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N': apply H (No transpose)
 | 
						|
*>          = 'C': apply H**T (Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIRECT
 | 
						|
*> \verbatim
 | 
						|
*>          DIRECT is CHARACTER*1
 | 
						|
*>          Indicates how H is formed from a product of elementary
 | 
						|
*>          reflectors
 | 
						|
*>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
 | 
						|
*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] STOREV
 | 
						|
*> \verbatim
 | 
						|
*>          STOREV is CHARACTER*1
 | 
						|
*>          Indicates how the vectors which define the elementary
 | 
						|
*>          reflectors are stored:
 | 
						|
*>          = 'C': Columnwise                        (not supported yet)
 | 
						|
*>          = 'R': Rowwise
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The order of the matrix T (= the number of elementary
 | 
						|
*>          reflectors whose product defines the block reflector).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>          The number of columns of the matrix V containing the
 | 
						|
*>          meaningful part of the Householder reflectors.
 | 
						|
*>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is REAL array, dimension (LDV,NV).
 | 
						|
*>          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V.
 | 
						|
*>          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is REAL array, dimension (LDT,K)
 | 
						|
*>          The triangular K-by-K matrix T in the representation of the
 | 
						|
*>          block reflector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T. LDT >= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LDWORK,K)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LDWORK is INTEGER
 | 
						|
*>          The leading dimension of the array WORK.
 | 
						|
*>          If SIDE = 'L', LDWORK >= max(1,N);
 | 
						|
*>          if SIDE = 'R', LDWORK >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
 | 
						|
     $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
 | 
						|
      INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               C( LDC, * ), T( LDT, * ), V( LDV, * ),
 | 
						|
     $                   WORK( LDWORK, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          TRANST
 | 
						|
      INTEGER            I, INFO, J
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SGEMM, STRMM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.LE.0 .OR. N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Check for currently supported options
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLARZB', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						|
         TRANST = 'T'
 | 
						|
      ELSE
 | 
						|
         TRANST = 'N'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  H * C  or  H**T * C
 | 
						|
*
 | 
						|
*        W( 1:n, 1:k ) = C( 1:k, 1:n )**T
 | 
						|
*
 | 
						|
         DO 10 J = 1, K
 | 
						|
            CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
 | 
						|
*                        C( m-l+1:m, 1:n )**T * V( 1:k, 1:l )**T
 | 
						|
*
 | 
						|
         IF( L.GT.0 )
 | 
						|
     $      CALL SGEMM( 'Transpose', 'Transpose', N, K, L, ONE,
 | 
						|
     $                  C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
 | 
						|
*
 | 
						|
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T
 | 
						|
*
 | 
						|
         CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
 | 
						|
     $               LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**T
 | 
						|
*
 | 
						|
         DO 30 J = 1, N
 | 
						|
            DO 20 I = 1, K
 | 
						|
               C( I, J ) = C( I, J ) - WORK( J, I )
 | 
						|
   20       CONTINUE
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
 | 
						|
*                            V( 1:k, 1:l )**T * W( 1:n, 1:k )**T
 | 
						|
*
 | 
						|
         IF( L.GT.0 )
 | 
						|
     $      CALL SGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
 | 
						|
     $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
 | 
						|
*
 | 
						|
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  C * H  or  C * H**T
 | 
						|
*
 | 
						|
*        W( 1:m, 1:k ) = C( 1:m, 1:k )
 | 
						|
*
 | 
						|
         DO 40 J = 1, K
 | 
						|
            CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
 | 
						|
*                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**T
 | 
						|
*
 | 
						|
         IF( L.GT.0 )
 | 
						|
     $      CALL SGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
 | 
						|
     $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
 | 
						|
*
 | 
						|
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T**T
 | 
						|
*
 | 
						|
         CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
 | 
						|
     $               LDT, WORK, LDWORK )
 | 
						|
*
 | 
						|
*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
 | 
						|
*
 | 
						|
         DO 60 J = 1, K
 | 
						|
            DO 50 I = 1, M
 | 
						|
               C( I, J ) = C( I, J ) - WORK( I, J )
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
 | 
						|
*                            W( 1:m, 1:k ) * V( 1:k, 1:l )
 | 
						|
*
 | 
						|
         IF( L.GT.0 )
 | 
						|
     $      CALL SGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
 | 
						|
     $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLARZB
 | 
						|
*
 | 
						|
      END
 |