414 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			414 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGEBAL
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGEBAL + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebal.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebal.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebal.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOB
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), SCALE( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGEBAL balances a general real matrix A.  This involves, first,
 | 
						|
*> permuting A by a similarity transformation to isolate eigenvalues
 | 
						|
*> in the first 1 to ILO-1 and last IHI+1 to N elements on the
 | 
						|
*> diagonal; and second, applying a diagonal similarity transformation
 | 
						|
*> to rows and columns ILO to IHI to make the rows and columns as
 | 
						|
*> close in norm as possible.  Both steps are optional.
 | 
						|
*>
 | 
						|
*> Balancing may reduce the 1-norm of the matrix, and improve the
 | 
						|
*> accuracy of the computed eigenvalues and/or eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOB
 | 
						|
*> \verbatim
 | 
						|
*>          JOB is CHARACTER*1
 | 
						|
*>          Specifies the operations to be performed on A:
 | 
						|
*>          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
 | 
						|
*>                  for i = 1,...,N;
 | 
						|
*>          = 'P':  permute only;
 | 
						|
*>          = 'S':  scale only;
 | 
						|
*>          = 'B':  both permute and scale.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the input matrix A.
 | 
						|
*>          On exit,  A is overwritten by the balanced matrix.
 | 
						|
*>          If JOB = 'N', A is not referenced.
 | 
						|
*>          See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*> \param[out] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>          ILO and IHI are set to integers such that on exit
 | 
						|
*>          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
 | 
						|
*>          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is REAL array, dimension (N)
 | 
						|
*>          Details of the permutations and scaling factors applied to
 | 
						|
*>          A.  If P(j) is the index of the row and column interchanged
 | 
						|
*>          with row and column j and D(j) is the scaling factor
 | 
						|
*>          applied to row and column j, then
 | 
						|
*>          SCALE(j) = P(j)    for j = 1,...,ILO-1
 | 
						|
*>                   = D(j)    for j = ILO,...,IHI
 | 
						|
*>                   = P(j)    for j = IHI+1,...,N.
 | 
						|
*>          The order in which the interchanges are made is N to IHI+1,
 | 
						|
*>          then 1 to ILO-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realGEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The permutations consist of row and column interchanges which put
 | 
						|
*>  the matrix in the form
 | 
						|
*>
 | 
						|
*>             ( T1   X   Y  )
 | 
						|
*>     P A P = (  0   B   Z  )
 | 
						|
*>             (  0   0   T2 )
 | 
						|
*>
 | 
						|
*>  where T1 and T2 are upper triangular matrices whose eigenvalues lie
 | 
						|
*>  along the diagonal.  The column indices ILO and IHI mark the starting
 | 
						|
*>  and ending columns of the submatrix B. Balancing consists of applying
 | 
						|
*>  a diagonal similarity transformation inv(D) * B * D to make the
 | 
						|
*>  1-norms of each row of B and its corresponding column nearly equal.
 | 
						|
*>  The output matrix is
 | 
						|
*>
 | 
						|
*>     ( T1     X*D          Y    )
 | 
						|
*>     (  0  inv(D)*B*D  inv(D)*Z ).
 | 
						|
*>     (  0      0           T2   )
 | 
						|
*>
 | 
						|
*>  Information about the permutations P and the diagonal matrix D is
 | 
						|
*>  returned in the vector SCALE.
 | 
						|
*>
 | 
						|
*>  This subroutine is based on the EISPACK routine BALANC.
 | 
						|
*>
 | 
						|
*>  Modified by Tzu-Yi Chen, Computer Science Division, University of
 | 
						|
*>    California at Berkeley, USA
 | 
						|
*>
 | 
						|
*>  Refactored by Evert Provoost, Department of Computer Science,
 | 
						|
*>    KU Leuven, Belgium
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOB
 | 
						|
      INTEGER            IHI, ILO, INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), SCALE( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      REAL               SCLFAC
 | 
						|
      PARAMETER          ( SCLFAC = 2.0E+0 )
 | 
						|
      REAL               FACTOR
 | 
						|
      PARAMETER          ( FACTOR = 0.95E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOCONV, CANSWAP
 | 
						|
      INTEGER            I, ICA, IRA, J, K, L
 | 
						|
      REAL               C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
 | 
						|
     $                   SFMIN2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            SISNAN, LSAME
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      REAL               SLAMCH, SNRM2
 | 
						|
      EXTERNAL           SISNAN, LSAME, ISAMAX, SLAMCH, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SSCAL, SSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
 | 
						|
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGEBAL', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick returns.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         ILO = 1
 | 
						|
         IHI = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'N' ) ) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            SCALE( I ) = ONE
 | 
						|
         END DO
 | 
						|
         ILO = 1
 | 
						|
         IHI = N
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Permutation to isolate eigenvalues if possible.
 | 
						|
*
 | 
						|
      K = 1
 | 
						|
      L = N
 | 
						|
*
 | 
						|
      IF( .NOT.LSAME( JOB, 'S' ) ) THEN
 | 
						|
*
 | 
						|
*        Row and column exchange.
 | 
						|
*
 | 
						|
         NOCONV = .TRUE.
 | 
						|
         DO WHILE( NOCONV )
 | 
						|
*
 | 
						|
*           Search for rows isolating an eigenvalue and push them down.
 | 
						|
*
 | 
						|
            NOCONV = .FALSE.
 | 
						|
            DO I = L, 1, -1
 | 
						|
               CANSWAP = .TRUE.
 | 
						|
               DO J = 1, L
 | 
						|
                  IF( I.NE.J .AND. A( I, J ).NE.ZERO ) THEN
 | 
						|
                     CANSWAP = .FALSE.
 | 
						|
                     EXIT
 | 
						|
                  END IF
 | 
						|
               END DO
 | 
						|
*
 | 
						|
               IF( CANSWAP ) THEN
 | 
						|
                  SCALE( L ) = I
 | 
						|
                  IF( I.NE.L ) THEN
 | 
						|
                     CALL SSWAP( L, A( 1, I ), 1, A( 1, L ), 1 )
 | 
						|
                     CALL SSWAP( N-K+1, A( I, K ), LDA, A( L, K ), LDA )
 | 
						|
                  END IF
 | 
						|
                  NOCONV = .TRUE.
 | 
						|
*
 | 
						|
                  IF( L.EQ.1 ) THEN
 | 
						|
                     ILO = 1
 | 
						|
                     IHI = 1
 | 
						|
                     RETURN
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  L = L - 1
 | 
						|
               END IF
 | 
						|
            END DO
 | 
						|
*
 | 
						|
         END DO
 | 
						|
 | 
						|
         NOCONV = .TRUE.
 | 
						|
         DO WHILE( NOCONV )
 | 
						|
*
 | 
						|
*           Search for columns isolating an eigenvalue and push them left.
 | 
						|
*
 | 
						|
            NOCONV = .FALSE.
 | 
						|
            DO J = K, L
 | 
						|
               CANSWAP = .TRUE.
 | 
						|
               DO I = K, L
 | 
						|
                  IF( I.NE.J .AND. A( I, J ).NE.ZERO ) THEN
 | 
						|
                     CANSWAP = .FALSE.
 | 
						|
                     EXIT
 | 
						|
                  END IF
 | 
						|
               END DO
 | 
						|
*
 | 
						|
               IF( CANSWAP ) THEN
 | 
						|
                  SCALE( K ) = J
 | 
						|
                  IF( J.NE.K ) THEN
 | 
						|
                     CALL SSWAP( L, A( 1, J ), 1, A( 1, K ), 1 )
 | 
						|
                     CALL SSWAP( N-K+1, A( J, K ), LDA, A( K, K ), LDA )
 | 
						|
                  END IF
 | 
						|
                  NOCONV = .TRUE.
 | 
						|
*
 | 
						|
                  K = K + 1
 | 
						|
               END IF
 | 
						|
            END DO
 | 
						|
*
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize SCALE for non-permuted submatrix.
 | 
						|
*
 | 
						|
      DO I = K, L
 | 
						|
         SCALE( I ) = ONE
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     If we only had to permute, we are done.
 | 
						|
*
 | 
						|
      IF( LSAME( JOB, 'P' ) ) THEN
 | 
						|
         ILO = K
 | 
						|
         IHI = L
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Balance the submatrix in rows K to L.
 | 
						|
*
 | 
						|
*     Iterative loop for norm reduction.
 | 
						|
*
 | 
						|
      SFMIN1 = SLAMCH( 'S' ) / SLAMCH( 'P' )
 | 
						|
      SFMAX1 = ONE / SFMIN1
 | 
						|
      SFMIN2 = SFMIN1*SCLFAC
 | 
						|
      SFMAX2 = ONE / SFMIN2
 | 
						|
*
 | 
						|
      NOCONV = .TRUE.
 | 
						|
      DO WHILE( NOCONV )
 | 
						|
         NOCONV = .FALSE.
 | 
						|
*
 | 
						|
         DO I = K, L
 | 
						|
*
 | 
						|
            C = SNRM2( L-K+1, A( K, I ), 1 )
 | 
						|
            R = SNRM2( L-K+1, A( I, K ), LDA )
 | 
						|
            ICA = ISAMAX( L, A( 1, I ), 1 )
 | 
						|
            CA = ABS( A( ICA, I ) )
 | 
						|
            IRA = ISAMAX( N-K+1, A( I, K ), LDA )
 | 
						|
            RA = ABS( A( I, IRA+K-1 ) )
 | 
						|
*
 | 
						|
*           Guard against zero C or R due to underflow.
 | 
						|
*
 | 
						|
            IF( C.EQ.ZERO .OR. R.EQ.ZERO ) CYCLE
 | 
						|
*
 | 
						|
*           Exit if NaN to avoid infinite loop
 | 
						|
*
 | 
						|
            IF( SISNAN( C+CA+R+RA ) ) THEN
 | 
						|
               INFO = -3
 | 
						|
               CALL XERBLA( 'SGEBAL', -INFO )
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            G = R / SCLFAC
 | 
						|
            F = ONE
 | 
						|
            S = C + R
 | 
						|
*
 | 
						|
            DO WHILE( C.LT.G .AND. MAX( F, C, CA ).LT.SFMAX2 .AND.
 | 
						|
     $                MIN( R, G, RA ).GT.SFMIN2 )
 | 
						|
               F = F*SCLFAC
 | 
						|
               C = C*SCLFAC
 | 
						|
               CA = CA*SCLFAC
 | 
						|
               R = R / SCLFAC
 | 
						|
               G = G / SCLFAC
 | 
						|
               RA = RA / SCLFAC
 | 
						|
            END DO
 | 
						|
*
 | 
						|
            G = C / SCLFAC
 | 
						|
*
 | 
						|
            DO WHILE( G.GE.R .AND. MAX( R, RA ).LT.SFMAX2 .AND.
 | 
						|
     $                MIN( F, C, G, CA ).GT.SFMIN2 )
 | 
						|
               F = F / SCLFAC
 | 
						|
               C = C / SCLFAC
 | 
						|
               G = G / SCLFAC
 | 
						|
               CA = CA / SCLFAC
 | 
						|
               R = R*SCLFAC
 | 
						|
               RA = RA*SCLFAC
 | 
						|
            END DO
 | 
						|
*
 | 
						|
*           Now balance.
 | 
						|
*
 | 
						|
            IF( ( C+R ).GE.FACTOR*S ) CYCLE
 | 
						|
            IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
 | 
						|
               IF( F*SCALE( I ).LE.SFMIN1 ) CYCLE
 | 
						|
            END IF
 | 
						|
            IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
 | 
						|
               IF( SCALE( I ).GE.SFMAX1 / F ) CYCLE
 | 
						|
            END IF
 | 
						|
            G = ONE / F
 | 
						|
            SCALE( I ) = SCALE( I )*F
 | 
						|
            NOCONV = .TRUE.
 | 
						|
*
 | 
						|
            CALL SSCAL( N-K+1, G, A( I, K ), LDA )
 | 
						|
            CALL SSCAL( L, F, A( 1, I ), 1 )
 | 
						|
*
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      END DO
 | 
						|
*
 | 
						|
      ILO = K
 | 
						|
      IHI = L
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGEBAL
 | 
						|
*
 | 
						|
      END
 |