933 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			933 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGSVJ0 pre-processor for the routine cgesvj.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGSVJ0 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgsvj0.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgsvj0.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgsvj0.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 | 
						|
*                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 | 
						|
*       REAL               EPS, SFMIN, TOL
 | 
						|
*       CHARACTER*1        JOBV
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
 | 
						|
*       REAL               SVA( N )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGSVJ0 is called from CGESVJ as a pre-processor and that is its main
 | 
						|
*> purpose. It applies Jacobi rotations in the same way as CGESVJ does, but
 | 
						|
*> it does not check convergence (stopping criterion). Few tuning
 | 
						|
*> parameters (marked by [TP]) are available for the implementer.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBV
 | 
						|
*> \verbatim
 | 
						|
*>          JOBV is CHARACTER*1
 | 
						|
*>          Specifies whether the output from this procedure is used
 | 
						|
*>          to compute the matrix V:
 | 
						|
*>          = 'V': the product of the Jacobi rotations is accumulated
 | 
						|
*>                 by postmultiplying the N-by-N array V.
 | 
						|
*>                (See the description of V.)
 | 
						|
*>          = 'A': the product of the Jacobi rotations is accumulated
 | 
						|
*>                 by postmultiplying the MV-by-N array V.
 | 
						|
*>                (See the descriptions of MV and V.)
 | 
						|
*>          = 'N': the Jacobi rotations are not accumulated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the input matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the input matrix A.
 | 
						|
*>          M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, M-by-N matrix A, such that A*diag(D) represents
 | 
						|
*>          the input matrix.
 | 
						|
*>          On exit,
 | 
						|
*>          A_onexit * diag(D_onexit) represents the input matrix A*diag(D)
 | 
						|
*>          post-multiplied by a sequence of Jacobi rotations, where the
 | 
						|
*>          rotation threshold and the total number of sweeps are given in
 | 
						|
*>          TOL and NSWEEP, respectively.
 | 
						|
*>          (See the descriptions of D, TOL and NSWEEP.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX array, dimension (N)
 | 
						|
*>          The array D accumulates the scaling factors from the complex scaled
 | 
						|
*>          Jacobi rotations.
 | 
						|
*>          On entry, A*diag(D) represents the input matrix.
 | 
						|
*>          On exit, A_onexit*diag(D_onexit) represents the input matrix
 | 
						|
*>          post-multiplied by a sequence of Jacobi rotations, where the
 | 
						|
*>          rotation threshold and the total number of sweeps are given in
 | 
						|
*>          TOL and NSWEEP, respectively.
 | 
						|
*>          (See the descriptions of A, TOL and NSWEEP.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] SVA
 | 
						|
*> \verbatim
 | 
						|
*>          SVA is REAL array, dimension (N)
 | 
						|
*>          On entry, SVA contains the Euclidean norms of the columns of
 | 
						|
*>          the matrix A*diag(D).
 | 
						|
*>          On exit, SVA contains the Euclidean norms of the columns of
 | 
						|
*>          the matrix A_onexit*diag(D_onexit).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MV
 | 
						|
*> \verbatim
 | 
						|
*>          MV is INTEGER
 | 
						|
*>          If JOBV = 'A', then MV rows of V are post-multiplied by a
 | 
						|
*>                           sequence of Jacobi rotations.
 | 
						|
*>          If JOBV = 'N',   then MV is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX array, dimension (LDV,N)
 | 
						|
*>          If JOBV = 'V' then N rows of V are post-multiplied by a
 | 
						|
*>                           sequence of Jacobi rotations.
 | 
						|
*>          If JOBV = 'A' then MV rows of V are post-multiplied by a
 | 
						|
*>                           sequence of Jacobi rotations.
 | 
						|
*>          If JOBV = 'N',   then V is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V,  LDV >= 1.
 | 
						|
*>          If JOBV = 'V', LDV >= N.
 | 
						|
*>          If JOBV = 'A', LDV >= MV.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] EPS
 | 
						|
*> \verbatim
 | 
						|
*>          EPS is REAL
 | 
						|
*>          EPS = SLAMCH('Epsilon')
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SFMIN
 | 
						|
*> \verbatim
 | 
						|
*>          SFMIN is REAL
 | 
						|
*>          SFMIN = SLAMCH('Safe Minimum')
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TOL
 | 
						|
*> \verbatim
 | 
						|
*>          TOL is REAL
 | 
						|
*>          TOL is the threshold for Jacobi rotations. For a pair
 | 
						|
*>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
 | 
						|
*>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NSWEEP
 | 
						|
*> \verbatim
 | 
						|
*>          NSWEEP is INTEGER
 | 
						|
*>          NSWEEP is the number of sweeps of Jacobi rotations to be
 | 
						|
*>          performed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          LWORK is the dimension of WORK. LWORK >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, then the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> CGSVJ0 is used just to enable CGESVJ to call a simplified version of
 | 
						|
*> itself to work on a submatrix of the original matrix.
 | 
						|
*>
 | 
						|
*> \par Contributor:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Zlatko Drmac (Zagreb, Croatia)
 | 
						|
*>
 | 
						|
*> \par Bugs, Examples and Comments:
 | 
						|
*  =================================
 | 
						|
*>
 | 
						|
*> Please report all bugs and send interesting test examples and comments to
 | 
						|
*> drmac@math.hr. Thank you.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
 | 
						|
     $                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
      IMPLICIT NONE
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
 | 
						|
      REAL               EPS, SFMIN, TOL
 | 
						|
      CHARACTER*1        JOBV
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
 | 
						|
      REAL               SVA( N )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Parameters ..
 | 
						|
      REAL               ZERO, HALF, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0)
 | 
						|
      COMPLEX      CZERO,                  CONE
 | 
						|
      PARAMETER  ( CZERO = (0.0E0, 0.0E0), CONE = (1.0E0, 0.0E0) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX            AAPQ, OMPQ
 | 
						|
      REAL               AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
 | 
						|
     $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
 | 
						|
     $                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
 | 
						|
     $                   THSIGN
 | 
						|
      INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
 | 
						|
     $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
 | 
						|
     $                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
 | 
						|
      LOGICAL            APPLV, ROTOK, RSVEC
 | 
						|
*     ..
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC ABS, MAX, CONJG, REAL, MIN, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SCNRM2
 | 
						|
      COMPLEX            CDOTC
 | 
						|
      INTEGER            ISAMAX
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           ISAMAX, LSAME, CDOTC, SCNRM2
 | 
						|
*     ..
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
*     ..
 | 
						|
*     from BLAS
 | 
						|
      EXTERNAL           CCOPY, CROT, CSWAP, CAXPY
 | 
						|
*     from LAPACK
 | 
						|
      EXTERNAL           CLASCL, CLASSQ, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      APPLV = LSAME( JOBV, 'A' )
 | 
						|
      RSVEC = LSAME( JOBV, 'V' )
 | 
						|
      IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.M ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
 | 
						|
     $         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE IF( TOL.LE.EPS ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( NSWEEP.LT.0 ) THEN
 | 
						|
         INFO = -14
 | 
						|
      ELSE IF( LWORK.LT.M ) THEN
 | 
						|
         INFO = -16
 | 
						|
      ELSE
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     #:(
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGSVJ0', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( RSVEC ) THEN
 | 
						|
         MVL = N
 | 
						|
      ELSE IF( APPLV ) THEN
 | 
						|
         MVL = MV
 | 
						|
      END IF
 | 
						|
      RSVEC = RSVEC .OR. APPLV
 | 
						|
 | 
						|
      ROOTEPS = SQRT( EPS )
 | 
						|
      ROOTSFMIN = SQRT( SFMIN )
 | 
						|
      SMALL = SFMIN / EPS
 | 
						|
      BIG = ONE / SFMIN
 | 
						|
      ROOTBIG = ONE / ROOTSFMIN
 | 
						|
      BIGTHETA = ONE / ROOTEPS
 | 
						|
      ROOTTOL = SQRT( TOL )
 | 
						|
*
 | 
						|
*     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
 | 
						|
*
 | 
						|
      EMPTSW = ( N*( N-1 ) ) / 2
 | 
						|
      NOTROT = 0
 | 
						|
*
 | 
						|
*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | 
						|
*
 | 
						|
 | 
						|
      SWBAND = 0
 | 
						|
*[TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective
 | 
						|
*     if CGESVJ is used as a computational routine in the preconditioned
 | 
						|
*     Jacobi SVD algorithm CGEJSV. For sweeps i=1:SWBAND the procedure
 | 
						|
*     works on pivots inside a band-like region around the diagonal.
 | 
						|
*     The boundaries are determined dynamically, based on the number of
 | 
						|
*     pivots above a threshold.
 | 
						|
*
 | 
						|
      KBL = MIN( 8, N )
 | 
						|
*[TP] KBL is a tuning parameter that defines the tile size in the
 | 
						|
*     tiling of the p-q loops of pivot pairs. In general, an optimal
 | 
						|
*     value of KBL depends on the matrix dimensions and on the
 | 
						|
*     parameters of the computer's memory.
 | 
						|
*
 | 
						|
      NBL = N / KBL
 | 
						|
      IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
 | 
						|
*
 | 
						|
      BLSKIP = KBL**2
 | 
						|
*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
 | 
						|
*
 | 
						|
      ROWSKIP = MIN( 5, KBL )
 | 
						|
*[TP] ROWSKIP is a tuning parameter.
 | 
						|
*
 | 
						|
      LKAHEAD = 1
 | 
						|
*[TP] LKAHEAD is a tuning parameter.
 | 
						|
*
 | 
						|
*     Quasi block transformations, using the lower (upper) triangular
 | 
						|
*     structure of the input matrix. The quasi-block-cycling usually
 | 
						|
*     invokes cubic convergence. Big part of this cycle is done inside
 | 
						|
*     canonical subspaces of dimensions less than M.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
 | 
						|
*
 | 
						|
      DO 1993 i = 1, NSWEEP
 | 
						|
*
 | 
						|
*     .. go go go ...
 | 
						|
*
 | 
						|
         MXAAPQ = ZERO
 | 
						|
         MXSINJ = ZERO
 | 
						|
         ISWROT = 0
 | 
						|
*
 | 
						|
         NOTROT = 0
 | 
						|
         PSKIPPED = 0
 | 
						|
*
 | 
						|
*     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
 | 
						|
*     1 <= p < q <= N. This is the first step toward a blocked implementation
 | 
						|
*     of the rotations. New implementation, based on block transformations,
 | 
						|
*     is under development.
 | 
						|
*
 | 
						|
         DO 2000 ibr = 1, NBL
 | 
						|
*
 | 
						|
            igl = ( ibr-1 )*KBL + 1
 | 
						|
*
 | 
						|
            DO 1002 ir1 = 0, MIN( LKAHEAD, NBL-ibr )
 | 
						|
*
 | 
						|
               igl = igl + ir1*KBL
 | 
						|
*
 | 
						|
               DO 2001 p = igl, MIN( igl+KBL-1, N-1 )
 | 
						|
*
 | 
						|
*     .. de Rijk's pivoting
 | 
						|
*
 | 
						|
                  q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | 
						|
                  IF( p.NE.q ) THEN
 | 
						|
                     CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | 
						|
                     IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1,
 | 
						|
     $                                           V( 1, q ), 1 )
 | 
						|
                     TEMP1 = SVA( p )
 | 
						|
                     SVA( p ) = SVA( q )
 | 
						|
                     SVA( q ) = TEMP1
 | 
						|
                     AAPQ = D(p)
 | 
						|
                     D(p) = D(q)
 | 
						|
                     D(q) = AAPQ
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( ir1.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Column norms are periodically updated by explicit
 | 
						|
*        norm computation.
 | 
						|
*        Caveat:
 | 
						|
*        Unfortunately, some BLAS implementations compute SNCRM2(M,A(1,p),1)
 | 
						|
*        as SQRT(S=CDOTC(M,A(1,p),1,A(1,p),1)), which may cause the result to
 | 
						|
*        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to
 | 
						|
*        underflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
 | 
						|
*        Hence, SCNRM2 cannot be trusted, not even in the case when
 | 
						|
*        the true norm is far from the under(over)flow boundaries.
 | 
						|
*        If properly implemented SCNRM2 is available, the IF-THEN-ELSE-END IF
 | 
						|
*        below should be replaced with "AAPP = SCNRM2( M, A(1,p), 1 )".
 | 
						|
*
 | 
						|
                     IF( ( SVA( p ).LT.ROOTBIG ) .AND.
 | 
						|
     $                    ( SVA( p ).GT.ROOTSFMIN ) ) THEN
 | 
						|
                        SVA( p ) = SCNRM2( M, A( 1, p ), 1 )
 | 
						|
                     ELSE
 | 
						|
                        TEMP1 = ZERO
 | 
						|
                        AAPP = ONE
 | 
						|
                        CALL CLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
 | 
						|
                        SVA( p ) = TEMP1*SQRT( AAPP )
 | 
						|
                     END IF
 | 
						|
                     AAPP = SVA( p )
 | 
						|
                  ELSE
 | 
						|
                     AAPP = SVA( p )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( AAPP.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
                     PSKIPPED = 0
 | 
						|
*
 | 
						|
                     DO 2002 q = p + 1, MIN( igl+KBL-1, N )
 | 
						|
*
 | 
						|
                        AAQQ = SVA( q )
 | 
						|
*
 | 
						|
                        IF( AAQQ.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
                           AAPP0 = AAPP
 | 
						|
                           IF( AAQQ.GE.ONE ) THEN
 | 
						|
                              ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | 
						|
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | 
						|
     $                                   A( 1, q ), 1 ) / AAQQ ) / AAPP
 | 
						|
                              ELSE
 | 
						|
                                 CALL CCOPY( M, A( 1, p ), 1,
 | 
						|
     $                                        WORK, 1 )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, AAPP, ONE,
 | 
						|
     $                                M, 1, WORK, LDA, IERR )
 | 
						|
                                 AAPQ = CDOTC( M, WORK, 1,
 | 
						|
     $                                   A( 1, q ), 1 ) / AAQQ
 | 
						|
                              END IF
 | 
						|
                           ELSE
 | 
						|
                              ROTOK = AAPP.LE.( AAQQ / SMALL )
 | 
						|
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | 
						|
     $                                    A( 1, q ), 1 ) / AAPP ) / AAQQ
 | 
						|
                              ELSE
 | 
						|
                                 CALL CCOPY( M, A( 1, q ), 1,
 | 
						|
     $                                        WORK, 1 )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, AAQQ,
 | 
						|
     $                                         ONE, M, 1,
 | 
						|
     $                                         WORK, LDA, IERR )
 | 
						|
                                 AAPQ = CDOTC( M, A( 1, p ), 1,
 | 
						|
     $                                   WORK, 1 ) / AAPP
 | 
						|
                              END IF
 | 
						|
                           END IF
 | 
						|
*
 | 
						|
*                           AAPQ = AAPQ * CONJG( CWORK(p) ) * CWORK(q)
 | 
						|
                           AAPQ1  = -ABS(AAPQ)
 | 
						|
                           MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
 | 
						|
*
 | 
						|
*        TO rotate or NOT to rotate, THAT is the question ...
 | 
						|
*
 | 
						|
                           IF( ABS( AAPQ1 ).GT.TOL ) THEN
 | 
						|
                              OMPQ = AAPQ / ABS(AAPQ)
 | 
						|
*
 | 
						|
*           .. rotate
 | 
						|
*[RTD]      ROTATED = ROTATED + ONE
 | 
						|
*
 | 
						|
                              IF( ir1.EQ.0 ) THEN
 | 
						|
                                 NOTROT = 0
 | 
						|
                                 PSKIPPED = 0
 | 
						|
                                 ISWROT = ISWROT + 1
 | 
						|
                              END IF
 | 
						|
*
 | 
						|
                              IF( ROTOK ) THEN
 | 
						|
*
 | 
						|
                                 AQOAP = AAQQ / AAPP
 | 
						|
                                 APOAQ = AAPP / AAQQ
 | 
						|
                                 THETA = -HALF*ABS( AQOAP-APOAQ )/AAPQ1
 | 
						|
*
 | 
						|
                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | 
						|
*
 | 
						|
                                    T  = HALF / THETA
 | 
						|
                                    CS = ONE
 | 
						|
 | 
						|
                                    CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | 
						|
     $                                          CS, CONJG(OMPQ)*T )
 | 
						|
                                    IF ( RSVEC ) THEN
 | 
						|
                                        CALL CROT( MVL, V(1,p), 1,
 | 
						|
     $                                  V(1,q), 1, CS, CONJG(OMPQ)*T )
 | 
						|
                                    END IF
 | 
						|
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | 
						|
     $                                          ONE+T*APOAQ*AAPQ1 ) )
 | 
						|
                                    AAPP = AAPP*SQRT( MAX( ZERO,
 | 
						|
     $                                          ONE-T*AQOAP*AAPQ1 ) )
 | 
						|
                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
 | 
						|
*
 | 
						|
                                 ELSE
 | 
						|
*
 | 
						|
*                 .. choose correct signum for THETA and rotate
 | 
						|
*
 | 
						|
                                    THSIGN = -SIGN( ONE, AAPQ1 )
 | 
						|
                                    T = ONE / ( THETA+THSIGN*
 | 
						|
     $                                   SQRT( ONE+THETA*THETA ) )
 | 
						|
                                    CS = SQRT( ONE / ( ONE+T*T ) )
 | 
						|
                                    SN = T*CS
 | 
						|
*
 | 
						|
                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | 
						|
     $                                          ONE+T*APOAQ*AAPQ1 ) )
 | 
						|
                                    AAPP = AAPP*SQRT( MAX( ZERO,
 | 
						|
     $                                      ONE-T*AQOAP*AAPQ1 ) )
 | 
						|
*
 | 
						|
                                    CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | 
						|
     $                                          CS, CONJG(OMPQ)*SN )
 | 
						|
                                    IF ( RSVEC ) THEN
 | 
						|
                                        CALL CROT( MVL, V(1,p), 1,
 | 
						|
     $                                  V(1,q), 1, CS, CONJG(OMPQ)*SN )
 | 
						|
                                    END IF
 | 
						|
                                 END IF
 | 
						|
                                 D(p) = -D(q) * OMPQ
 | 
						|
*
 | 
						|
                                 ELSE
 | 
						|
*              .. have to use modified Gram-Schmidt like transformation
 | 
						|
                                 CALL CCOPY( M, A( 1, p ), 1,
 | 
						|
     $                                       WORK, 1 )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, AAPP, ONE, M,
 | 
						|
     $                                        1, WORK, LDA,
 | 
						|
     $                                        IERR )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, AAQQ, ONE, M,
 | 
						|
     $                                        1, A( 1, q ), LDA, IERR )
 | 
						|
                                 CALL CAXPY( M, -AAPQ, WORK, 1,
 | 
						|
     $                                       A( 1, q ), 1 )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, ONE, AAQQ, M,
 | 
						|
     $                                        1, A( 1, q ), LDA, IERR )
 | 
						|
                                 SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | 
						|
     $                                      ONE-AAPQ1*AAPQ1 ) )
 | 
						|
                                 MXSINJ = MAX( MXSINJ, SFMIN )
 | 
						|
                              END IF
 | 
						|
*           END IF ROTOK THEN ... ELSE
 | 
						|
*
 | 
						|
*           In the case of cancellation in updating SVA(q), SVA(p)
 | 
						|
*           recompute SVA(q), SVA(p).
 | 
						|
*
 | 
						|
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | 
						|
     $                            THEN
 | 
						|
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    SVA( q ) = SCNRM2( M, A( 1, q ), 1 )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAQQ = ONE
 | 
						|
                                    CALL CLASSQ( M, A( 1, q ), 1, T,
 | 
						|
     $                                           AAQQ )
 | 
						|
                                    SVA( q ) = T*SQRT( AAQQ )
 | 
						|
                                 END IF
 | 
						|
                              END IF
 | 
						|
                              IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
 | 
						|
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    AAPP = SCNRM2( M, A( 1, p ), 1 )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAPP = ONE
 | 
						|
                                    CALL CLASSQ( M, A( 1, p ), 1, T,
 | 
						|
     $                                           AAPP )
 | 
						|
                                    AAPP = T*SQRT( AAPP )
 | 
						|
                                 END IF
 | 
						|
                                 SVA( p ) = AAPP
 | 
						|
                              END IF
 | 
						|
*
 | 
						|
                           ELSE
 | 
						|
*        A(:,p) and A(:,q) already numerically orthogonal
 | 
						|
                              IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | 
						|
*[RTD]      SKIPPED  = SKIPPED  + 1
 | 
						|
                              PSKIPPED = PSKIPPED + 1
 | 
						|
                           END IF
 | 
						|
                        ELSE
 | 
						|
*        A(:,q) is zero column
 | 
						|
                           IF( ir1.EQ.0 )NOTROT = NOTROT + 1
 | 
						|
                           PSKIPPED = PSKIPPED + 1
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
                        IF( ( i.LE.SWBAND ) .AND.
 | 
						|
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | 
						|
                           IF( ir1.EQ.0 )AAPP = -AAPP
 | 
						|
                           NOTROT = 0
 | 
						|
                           GO TO 2103
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
 2002                CONTINUE
 | 
						|
*     END q-LOOP
 | 
						|
*
 | 
						|
 2103                CONTINUE
 | 
						|
*     bailed out of q-loop
 | 
						|
*
 | 
						|
                     SVA( p ) = AAPP
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
                     SVA( p ) = AAPP
 | 
						|
                     IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
 | 
						|
     $                   NOTROT = NOTROT + MIN( igl+KBL-1, N ) - p
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
 2001          CONTINUE
 | 
						|
*     end of the p-loop
 | 
						|
*     end of doing the block ( ibr, ibr )
 | 
						|
 1002       CONTINUE
 | 
						|
*     end of ir1-loop
 | 
						|
*
 | 
						|
* ... go to the off diagonal blocks
 | 
						|
*
 | 
						|
            igl = ( ibr-1 )*KBL + 1
 | 
						|
*
 | 
						|
            DO 2010 jbc = ibr + 1, NBL
 | 
						|
*
 | 
						|
               jgl = ( jbc-1 )*KBL + 1
 | 
						|
*
 | 
						|
*        doing the block at ( ibr, jbc )
 | 
						|
*
 | 
						|
               IJBLSK = 0
 | 
						|
               DO 2100 p = igl, MIN( igl+KBL-1, N )
 | 
						|
*
 | 
						|
                  AAPP = SVA( p )
 | 
						|
                  IF( AAPP.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
                     PSKIPPED = 0
 | 
						|
*
 | 
						|
                     DO 2200 q = jgl, MIN( jgl+KBL-1, N )
 | 
						|
*
 | 
						|
                        AAQQ = SVA( q )
 | 
						|
                        IF( AAQQ.GT.ZERO ) THEN
 | 
						|
                           AAPP0 = AAPP
 | 
						|
*
 | 
						|
*     .. M x 2 Jacobi SVD ..
 | 
						|
*
 | 
						|
*        Safe Gram matrix computation
 | 
						|
*
 | 
						|
                           IF( AAQQ.GE.ONE ) THEN
 | 
						|
                              IF( AAPP.GE.AAQQ ) THEN
 | 
						|
                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
 | 
						|
                              ELSE
 | 
						|
                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
 | 
						|
                              END IF
 | 
						|
                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | 
						|
     $                                  A( 1, q ), 1 ) / AAQQ ) / AAPP
 | 
						|
                              ELSE
 | 
						|
                                 CALL CCOPY( M, A( 1, p ), 1,
 | 
						|
     $                                       WORK, 1 )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, AAPP,
 | 
						|
     $                                        ONE, M, 1,
 | 
						|
     $                                        WORK, LDA, IERR )
 | 
						|
                                 AAPQ = CDOTC( M, WORK, 1,
 | 
						|
     $                                  A( 1, q ), 1 ) / AAQQ
 | 
						|
                              END IF
 | 
						|
                           ELSE
 | 
						|
                              IF( AAPP.GE.AAQQ ) THEN
 | 
						|
                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
 | 
						|
                              ELSE
 | 
						|
                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
 | 
						|
                              END IF
 | 
						|
                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
 | 
						|
                                 AAPQ = ( CDOTC( M, A( 1, p ), 1,
 | 
						|
     $                                 A( 1, q ), 1 ) / MAX(AAQQ,AAPP) )
 | 
						|
     $                                               / MIN(AAQQ,AAPP)
 | 
						|
                              ELSE
 | 
						|
                                 CALL CCOPY( M, A( 1, q ), 1,
 | 
						|
     $                                       WORK, 1 )
 | 
						|
                                 CALL CLASCL( 'G', 0, 0, AAQQ,
 | 
						|
     $                                        ONE, M, 1,
 | 
						|
     $                                        WORK, LDA, IERR )
 | 
						|
                                 AAPQ = CDOTC( M, A( 1, p ), 1,
 | 
						|
     $                                  WORK, 1 ) / AAPP
 | 
						|
                              END IF
 | 
						|
                           END IF
 | 
						|
*
 | 
						|
*                           AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
 | 
						|
                           AAPQ1  = -ABS(AAPQ)
 | 
						|
                           MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
 | 
						|
*
 | 
						|
*        TO rotate or NOT to rotate, THAT is the question ...
 | 
						|
*
 | 
						|
                           IF( ABS( AAPQ1 ).GT.TOL ) THEN
 | 
						|
                              OMPQ = AAPQ / ABS(AAPQ)
 | 
						|
                              NOTROT = 0
 | 
						|
*[RTD]      ROTATED  = ROTATED + 1
 | 
						|
                              PSKIPPED = 0
 | 
						|
                              ISWROT = ISWROT + 1
 | 
						|
*
 | 
						|
                              IF( ROTOK ) THEN
 | 
						|
*
 | 
						|
                                 AQOAP = AAQQ / AAPP
 | 
						|
                                 APOAQ = AAPP / AAQQ
 | 
						|
                                 THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
 | 
						|
                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA
 | 
						|
*
 | 
						|
                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
 | 
						|
                                    T  = HALF / THETA
 | 
						|
                                    CS = ONE
 | 
						|
                                    CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | 
						|
     $                                          CS, CONJG(OMPQ)*T )
 | 
						|
                                    IF( RSVEC ) THEN
 | 
						|
                                        CALL CROT( MVL, V(1,p), 1,
 | 
						|
     $                                  V(1,q), 1, CS, CONJG(OMPQ)*T )
 | 
						|
                                    END IF
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | 
						|
     $                                         ONE+T*APOAQ*AAPQ1 ) )
 | 
						|
                                    AAPP = AAPP*SQRT( MAX( ZERO,
 | 
						|
     $                                     ONE-T*AQOAP*AAPQ1 ) )
 | 
						|
                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
 | 
						|
                                 ELSE
 | 
						|
*
 | 
						|
*                 .. choose correct signum for THETA and rotate
 | 
						|
*
 | 
						|
                                    THSIGN = -SIGN( ONE, AAPQ1 )
 | 
						|
                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
 | 
						|
                                    T = ONE / ( THETA+THSIGN*
 | 
						|
     $                                  SQRT( ONE+THETA*THETA ) )
 | 
						|
                                    CS = SQRT( ONE / ( ONE+T*T ) )
 | 
						|
                                    SN = T*CS
 | 
						|
                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | 
						|
     $                                         ONE+T*APOAQ*AAPQ1 ) )
 | 
						|
                                    AAPP = AAPP*SQRT( MAX( ZERO,
 | 
						|
     $                                         ONE-T*AQOAP*AAPQ1 ) )
 | 
						|
*
 | 
						|
                                    CALL CROT( M, A(1,p), 1, A(1,q), 1,
 | 
						|
     $                                          CS, CONJG(OMPQ)*SN )
 | 
						|
                                    IF( RSVEC ) THEN
 | 
						|
                                        CALL CROT( MVL, V(1,p), 1,
 | 
						|
     $                                  V(1,q), 1, CS, CONJG(OMPQ)*SN )
 | 
						|
                                    END IF
 | 
						|
                                 END IF
 | 
						|
                                 D(p) = -D(q) * OMPQ
 | 
						|
*
 | 
						|
                              ELSE
 | 
						|
*              .. have to use modified Gram-Schmidt like transformation
 | 
						|
                               IF( AAPP.GT.AAQQ ) THEN
 | 
						|
                                    CALL CCOPY( M, A( 1, p ), 1,
 | 
						|
     $                                          WORK, 1 )
 | 
						|
                                    CALL CLASCL( 'G', 0, 0, AAPP, ONE,
 | 
						|
     $                                           M, 1, WORK,LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
 | 
						|
     $                                           M, 1, A( 1, q ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    CALL CAXPY( M, -AAPQ, WORK,
 | 
						|
     $                                          1, A( 1, q ), 1 )
 | 
						|
                                    CALL CLASCL( 'G', 0, 0, ONE, AAQQ,
 | 
						|
     $                                           M, 1, A( 1, q ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
 | 
						|
     $                                         ONE-AAPQ1*AAPQ1 ) )
 | 
						|
                                    MXSINJ = MAX( MXSINJ, SFMIN )
 | 
						|
                               ELSE
 | 
						|
                                   CALL CCOPY( M, A( 1, q ), 1,
 | 
						|
     $                                          WORK, 1 )
 | 
						|
                                    CALL CLASCL( 'G', 0, 0, AAQQ, ONE,
 | 
						|
     $                                           M, 1, WORK,LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    CALL CLASCL( 'G', 0, 0, AAPP, ONE,
 | 
						|
     $                                           M, 1, A( 1, p ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    CALL CAXPY( M, -CONJG(AAPQ),
 | 
						|
     $                                   WORK, 1, A( 1, p ), 1 )
 | 
						|
                                    CALL CLASCL( 'G', 0, 0, ONE, AAPP,
 | 
						|
     $                                           M, 1, A( 1, p ), LDA,
 | 
						|
     $                                           IERR )
 | 
						|
                                    SVA( p ) = AAPP*SQRT( MAX( ZERO,
 | 
						|
     $                                         ONE-AAPQ1*AAPQ1 ) )
 | 
						|
                                    MXSINJ = MAX( MXSINJ, SFMIN )
 | 
						|
                               END IF
 | 
						|
                              END IF
 | 
						|
*           END IF ROTOK THEN ... ELSE
 | 
						|
*
 | 
						|
*           In the case of cancellation in updating SVA(q), SVA(p)
 | 
						|
*           .. recompute SVA(q), SVA(p)
 | 
						|
                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
 | 
						|
     $                            THEN
 | 
						|
                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    SVA( q ) = SCNRM2( M, A( 1, q ), 1)
 | 
						|
                                  ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAQQ = ONE
 | 
						|
                                    CALL CLASSQ( M, A( 1, q ), 1, T,
 | 
						|
     $                                           AAQQ )
 | 
						|
                                    SVA( q ) = T*SQRT( AAQQ )
 | 
						|
                                 END IF
 | 
						|
                              END IF
 | 
						|
                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
 | 
						|
                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
 | 
						|
     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
 | 
						|
                                    AAPP = SCNRM2( M, A( 1, p ), 1 )
 | 
						|
                                 ELSE
 | 
						|
                                    T = ZERO
 | 
						|
                                    AAPP = ONE
 | 
						|
                                    CALL CLASSQ( M, A( 1, p ), 1, T,
 | 
						|
     $                                           AAPP )
 | 
						|
                                    AAPP = T*SQRT( AAPP )
 | 
						|
                                 END IF
 | 
						|
                                 SVA( p ) = AAPP
 | 
						|
                              END IF
 | 
						|
*              end of OK rotation
 | 
						|
                           ELSE
 | 
						|
                              NOTROT = NOTROT + 1
 | 
						|
*[RTD]      SKIPPED  = SKIPPED  + 1
 | 
						|
                              PSKIPPED = PSKIPPED + 1
 | 
						|
                              IJBLSK = IJBLSK + 1
 | 
						|
                           END IF
 | 
						|
                        ELSE
 | 
						|
                           NOTROT = NOTROT + 1
 | 
						|
                           PSKIPPED = PSKIPPED + 1
 | 
						|
                           IJBLSK = IJBLSK + 1
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
 | 
						|
     $                      THEN
 | 
						|
                           SVA( p ) = AAPP
 | 
						|
                           NOTROT = 0
 | 
						|
                           GO TO 2011
 | 
						|
                        END IF
 | 
						|
                        IF( ( i.LE.SWBAND ) .AND.
 | 
						|
     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
 | 
						|
                           AAPP = -AAPP
 | 
						|
                           NOTROT = 0
 | 
						|
                           GO TO 2203
 | 
						|
                        END IF
 | 
						|
*
 | 
						|
 2200                CONTINUE
 | 
						|
*        end of the q-loop
 | 
						|
 2203                CONTINUE
 | 
						|
*
 | 
						|
                     SVA( p ) = AAPP
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
 | 
						|
     $                   MIN( jgl+KBL-1, N ) - jgl + 1
 | 
						|
                     IF( AAPP.LT.ZERO )NOTROT = 0
 | 
						|
*
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
 2100          CONTINUE
 | 
						|
*     end of the p-loop
 | 
						|
 2010       CONTINUE
 | 
						|
*     end of the jbc-loop
 | 
						|
 2011       CONTINUE
 | 
						|
*2011 bailed out of the jbc-loop
 | 
						|
            DO 2012 p = igl, MIN( igl+KBL-1, N )
 | 
						|
               SVA( p ) = ABS( SVA( p ) )
 | 
						|
 2012       CONTINUE
 | 
						|
***
 | 
						|
 2000    CONTINUE
 | 
						|
*2000 :: end of the ibr-loop
 | 
						|
*
 | 
						|
*     .. update SVA(N)
 | 
						|
         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
 | 
						|
     $       THEN
 | 
						|
            SVA( N ) = SCNRM2( M, A( 1, N ), 1 )
 | 
						|
         ELSE
 | 
						|
            T = ZERO
 | 
						|
            AAPP = ONE
 | 
						|
            CALL CLASSQ( M, A( 1, N ), 1, T, AAPP )
 | 
						|
            SVA( N ) = T*SQRT( AAPP )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*     Additional steering devices
 | 
						|
*
 | 
						|
         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
 | 
						|
     $       ( ISWROT.LE.N ) ) )SWBAND = i
 | 
						|
*
 | 
						|
         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( REAL( N ) )*
 | 
						|
     $       TOL ) .AND. ( REAL( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
 | 
						|
            GO TO 1994
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( NOTROT.GE.EMPTSW )GO TO 1994
 | 
						|
*
 | 
						|
 1993 CONTINUE
 | 
						|
*     end i=1:NSWEEP loop
 | 
						|
*
 | 
						|
* #:( Reaching this point means that the procedure has not converged.
 | 
						|
      INFO = NSWEEP - 1
 | 
						|
      GO TO 1995
 | 
						|
*
 | 
						|
 1994 CONTINUE
 | 
						|
* #:) Reaching this point means numerical convergence after the i-th
 | 
						|
*     sweep.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
* #:) INFO = 0 confirms successful iterations.
 | 
						|
 1995 CONTINUE
 | 
						|
*
 | 
						|
*     Sort the vector SVA() of column norms.
 | 
						|
      DO 5991 p = 1, N - 1
 | 
						|
         q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
 | 
						|
         IF( p.NE.q ) THEN
 | 
						|
            TEMP1 = SVA( p )
 | 
						|
            SVA( p ) = SVA( q )
 | 
						|
            SVA( q ) = TEMP1
 | 
						|
            AAPQ = D( p )
 | 
						|
            D( p ) = D( q )
 | 
						|
            D( q ) = AAPQ
 | 
						|
            CALL CSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
 | 
						|
            IF( RSVEC )CALL CSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
 | 
						|
         END IF
 | 
						|
 5991 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*     ..
 | 
						|
*     .. END OF CGSVJ0
 | 
						|
*     ..
 | 
						|
      END
 |