379 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE STRSMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 | 
						|
     $                   B, LDB )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
 | 
						|
      INTEGER            M, N, LDA, LDB
 | 
						|
      REAL               ALPHA
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  STRSM  solves one of the matrix equations
 | 
						|
*
 | 
						|
*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
 | 
						|
*
 | 
						|
*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 | 
						|
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
 | 
						|
*
 | 
						|
*     op( A ) = A   or   op( A ) = A'.
 | 
						|
*
 | 
						|
*  The matrix X is overwritten on B.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  SIDE   - CHARACTER*1.
 | 
						|
*           On entry, SIDE specifies whether op( A ) appears on the left
 | 
						|
*           or right of X as follows:
 | 
						|
*
 | 
						|
*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
 | 
						|
*
 | 
						|
*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On entry, UPLO specifies whether the matrix A is an upper or
 | 
						|
*           lower triangular matrix as follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  TRANSA - CHARACTER*1.
 | 
						|
*           On entry, TRANSA specifies the form of op( A ) to be used in
 | 
						|
*           the matrix multiplication as follows:
 | 
						|
*
 | 
						|
*              TRANSA = 'N' or 'n'   op( A ) = A.
 | 
						|
*
 | 
						|
*              TRANSA = 'T' or 't'   op( A ) = A'.
 | 
						|
*
 | 
						|
*              TRANSA = 'C' or 'c'   op( A ) = A'.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  DIAG   - CHARACTER*1.
 | 
						|
*           On entry, DIAG specifies whether or not A is unit triangular
 | 
						|
*           as follows:
 | 
						|
*
 | 
						|
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | 
						|
*
 | 
						|
*              DIAG = 'N' or 'n'   A is not assumed to be unit
 | 
						|
*                                  triangular.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  M      - INTEGER.
 | 
						|
*           On entry, M specifies the number of rows of B. M must be at
 | 
						|
*           least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the number of columns of B.  N must be
 | 
						|
*           at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - REAL            .
 | 
						|
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
 | 
						|
*           zero then  A is not referenced and  B need not be set before
 | 
						|
*           entry.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m
 | 
						|
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
 | 
						|
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
 | 
						|
*           upper triangular part of the array  A must contain the upper
 | 
						|
*           triangular matrix  and the strictly lower triangular part of
 | 
						|
*           A is not referenced.
 | 
						|
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
 | 
						|
*           lower triangular part of the array  A must contain the lower
 | 
						|
*           triangular matrix  and the strictly upper triangular part of
 | 
						|
*           A is not referenced.
 | 
						|
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
 | 
						|
*           A  are not referenced either,  but are assumed to be  unity.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  LDA    - INTEGER.
 | 
						|
*           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | 
						|
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
 | 
						|
*           then LDA must be at least max( 1, n ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  B      - REAL             array of DIMENSION ( LDB, n ).
 | 
						|
*           Before entry,  the leading  m by n part of the array  B must
 | 
						|
*           contain  the  right-hand  side  matrix  B,  and  on exit  is
 | 
						|
*           overwritten by the solution matrix  X.
 | 
						|
*
 | 
						|
*  LDB    - INTEGER.
 | 
						|
*           On entry, LDB specifies the first dimension of B as declared
 | 
						|
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | 
						|
*           max( 1, m ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 3 Blas routine.
 | 
						|
*
 | 
						|
*
 | 
						|
*  -- Written on 8-February-1989.
 | 
						|
*     Jack Dongarra, Argonne National Laboratory.
 | 
						|
*     Iain Duff, AERE Harwell.
 | 
						|
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | 
						|
*     Sven Hammarling, Numerical Algorithms Group Ltd.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LSIDE, NOUNIT, UPPER
 | 
						|
      INTEGER            I, INFO, J, K, NROWA
 | 
						|
      REAL               TEMP
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE         , ZERO
 | 
						|
      PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      LSIDE  = LSAME( SIDE  , 'L' )
 | 
						|
      IF( LSIDE )THEN
 | 
						|
         NROWA = M
 | 
						|
      ELSE
 | 
						|
         NROWA = N
 | 
						|
      END IF
 | 
						|
      NOUNIT = LSAME( DIAG  , 'N' )
 | 
						|
      UPPER  = LSAME( UPLO  , 'U' )
 | 
						|
*
 | 
						|
      INFO   = 0
 | 
						|
      IF(      ( .NOT.LSIDE                ).AND.
 | 
						|
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( ( .NOT.UPPER                ).AND.
 | 
						|
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
 | 
						|
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
 | 
						|
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
 | 
						|
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
 | 
						|
         INFO = 4
 | 
						|
      ELSE IF( M  .LT.0               )THEN
 | 
						|
         INFO = 5
 | 
						|
      ELSE IF( N  .LT.0               )THEN
 | 
						|
         INFO = 6
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | 
						|
         INFO = 9
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
 | 
						|
         INFO = 11
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'STRSM ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     And when  alpha.eq.zero.
 | 
						|
*
 | 
						|
      IF( ALPHA.EQ.ZERO )THEN
 | 
						|
         DO 20, J = 1, N
 | 
						|
            DO 10, I = 1, M
 | 
						|
               B( I, J ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations.
 | 
						|
*
 | 
						|
      IF( LSIDE )THEN
 | 
						|
         IF( LSAME( TRANSA, 'N' ) )THEN
 | 
						|
*
 | 
						|
*           Form  B := alpha*inv( A )*B.
 | 
						|
*
 | 
						|
            IF( UPPER )THEN
 | 
						|
               DO 60, J = 1, N
 | 
						|
                  IF( ALPHA.NE.ONE )THEN
 | 
						|
                     DO 30, I = 1, M
 | 
						|
                        B( I, J ) = ALPHA*B( I, J )
 | 
						|
   30                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 50, K = M, 1, -1
 | 
						|
                     IF( B( K, J ).NE.ZERO )THEN
 | 
						|
                        IF( NOUNIT )
 | 
						|
     $                     B( K, J ) = B( K, J )/A( K, K )
 | 
						|
                        DO 40, I = 1, K - 1
 | 
						|
                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
 | 
						|
   40                   CONTINUE
 | 
						|
                     END IF
 | 
						|
   50             CONTINUE
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 100, J = 1, N
 | 
						|
                  IF( ALPHA.NE.ONE )THEN
 | 
						|
                     DO 70, I = 1, M
 | 
						|
                        B( I, J ) = ALPHA*B( I, J )
 | 
						|
   70                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 90 K = 1, M
 | 
						|
                     IF( B( K, J ).NE.ZERO )THEN
 | 
						|
                        IF( NOUNIT )
 | 
						|
     $                     B( K, J ) = B( K, J )/A( K, K )
 | 
						|
                        DO 80, I = K + 1, M
 | 
						|
                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
 | 
						|
   80                   CONTINUE
 | 
						|
                     END IF
 | 
						|
   90             CONTINUE
 | 
						|
  100          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Form  B := alpha*inv( A' )*B.
 | 
						|
*
 | 
						|
            IF( UPPER )THEN
 | 
						|
               DO 130, J = 1, N
 | 
						|
                  DO 120, I = 1, M
 | 
						|
                     TEMP = ALPHA*B( I, J )
 | 
						|
                     DO 110, K = 1, I - 1
 | 
						|
                        TEMP = TEMP - A( K, I )*B( K, J )
 | 
						|
  110                CONTINUE
 | 
						|
                     IF( NOUNIT )
 | 
						|
     $                  TEMP = TEMP/A( I, I )
 | 
						|
                     B( I, J ) = TEMP
 | 
						|
  120             CONTINUE
 | 
						|
  130          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 160, J = 1, N
 | 
						|
                  DO 150, I = M, 1, -1
 | 
						|
                     TEMP = ALPHA*B( I, J )
 | 
						|
                     DO 140, K = I + 1, M
 | 
						|
                        TEMP = TEMP - A( K, I )*B( K, J )
 | 
						|
  140                CONTINUE
 | 
						|
                     IF( NOUNIT )
 | 
						|
     $                  TEMP = TEMP/A( I, I )
 | 
						|
                     B( I, J ) = TEMP
 | 
						|
  150             CONTINUE
 | 
						|
  160          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IF( LSAME( TRANSA, 'N' ) )THEN
 | 
						|
*
 | 
						|
*           Form  B := alpha*B*inv( A ).
 | 
						|
*
 | 
						|
            IF( UPPER )THEN
 | 
						|
               DO 210, J = 1, N
 | 
						|
                  IF( ALPHA.NE.ONE )THEN
 | 
						|
                     DO 170, I = 1, M
 | 
						|
                        B( I, J ) = ALPHA*B( I, J )
 | 
						|
  170                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 190, K = 1, J - 1
 | 
						|
                     IF( A( K, J ).NE.ZERO )THEN
 | 
						|
                        DO 180, I = 1, M
 | 
						|
                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
 | 
						|
  180                   CONTINUE
 | 
						|
                     END IF
 | 
						|
  190             CONTINUE
 | 
						|
                  IF( NOUNIT )THEN
 | 
						|
                     TEMP = ONE/A( J, J )
 | 
						|
                     DO 200, I = 1, M
 | 
						|
                        B( I, J ) = TEMP*B( I, J )
 | 
						|
  200                CONTINUE
 | 
						|
                  END IF
 | 
						|
  210          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 260, J = N, 1, -1
 | 
						|
                  IF( ALPHA.NE.ONE )THEN
 | 
						|
                     DO 220, I = 1, M
 | 
						|
                        B( I, J ) = ALPHA*B( I, J )
 | 
						|
  220                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 240, K = J + 1, N
 | 
						|
                     IF( A( K, J ).NE.ZERO )THEN
 | 
						|
                        DO 230, I = 1, M
 | 
						|
                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
 | 
						|
  230                   CONTINUE
 | 
						|
                     END IF
 | 
						|
  240             CONTINUE
 | 
						|
                  IF( NOUNIT )THEN
 | 
						|
                     TEMP = ONE/A( J, J )
 | 
						|
                     DO 250, I = 1, M
 | 
						|
                       B( I, J ) = TEMP*B( I, J )
 | 
						|
  250                CONTINUE
 | 
						|
                  END IF
 | 
						|
  260          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Form  B := alpha*B*inv( A' ).
 | 
						|
*
 | 
						|
            IF( UPPER )THEN
 | 
						|
               DO 310, K = N, 1, -1
 | 
						|
                  IF( NOUNIT )THEN
 | 
						|
                     TEMP = ONE/A( K, K )
 | 
						|
                     DO 270, I = 1, M
 | 
						|
                        B( I, K ) = TEMP*B( I, K )
 | 
						|
  270                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 290, J = 1, K - 1
 | 
						|
                     IF( A( J, K ).NE.ZERO )THEN
 | 
						|
                        TEMP = A( J, K )
 | 
						|
                        DO 280, I = 1, M
 | 
						|
                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
 | 
						|
  280                   CONTINUE
 | 
						|
                     END IF
 | 
						|
  290             CONTINUE
 | 
						|
                  IF( ALPHA.NE.ONE )THEN
 | 
						|
                     DO 300, I = 1, M
 | 
						|
                        B( I, K ) = ALPHA*B( I, K )
 | 
						|
  300                CONTINUE
 | 
						|
                  END IF
 | 
						|
  310          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 360, K = 1, N
 | 
						|
                  IF( NOUNIT )THEN
 | 
						|
                     TEMP = ONE/A( K, K )
 | 
						|
                     DO 320, I = 1, M
 | 
						|
                        B( I, K ) = TEMP*B( I, K )
 | 
						|
  320                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  DO 340, J = K + 1, N
 | 
						|
                     IF( A( J, K ).NE.ZERO )THEN
 | 
						|
                        TEMP = A( J, K )
 | 
						|
                        DO 330, I = 1, M
 | 
						|
                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
 | 
						|
  330                   CONTINUE
 | 
						|
                     END IF
 | 
						|
  340             CONTINUE
 | 
						|
                  IF( ALPHA.NE.ONE )THEN
 | 
						|
                     DO 350, I = 1, M
 | 
						|
                        B( I, K ) = ALPHA*B( I, K )
 | 
						|
  350                CONTINUE
 | 
						|
                  END IF
 | 
						|
  360          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STRSM .
 | 
						|
*
 | 
						|
      END
 |