295 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE SSYMMF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
 | |
|      $                   BETA, C, LDC )
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*1        SIDE, UPLO
 | |
|       INTEGER            M, N, LDA, LDB, LDC
 | |
|       REAL               ALPHA, BETA
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * ), C( LDC, * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  SSYMM  performs one of the matrix-matrix operations
 | |
| *
 | |
| *     C := alpha*A*B + beta*C,
 | |
| *
 | |
| *  or
 | |
| *
 | |
| *     C := alpha*B*A + beta*C,
 | |
| *
 | |
| *  where alpha and beta are scalars,  A is a symmetric matrix and  B and
 | |
| *  C are  m by n matrices.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  SIDE   - CHARACTER*1.
 | |
| *           On entry,  SIDE  specifies whether  the  symmetric matrix  A
 | |
| *           appears on the  left or right  in the  operation as follows:
 | |
| *
 | |
| *              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
 | |
| *
 | |
| *              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | |
| *           triangular  part  of  the  symmetric  matrix   A  is  to  be
 | |
| *           referenced as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   Only the upper triangular part of the
 | |
| *                                  symmetric matrix is to be referenced.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   Only the lower triangular part of the
 | |
| *                                  symmetric matrix is to be referenced.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  M      - INTEGER.
 | |
| *           On entry,  M  specifies the number of rows of the matrix  C.
 | |
| *           M  must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the number of columns of the matrix C.
 | |
| *           N  must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - REAL            .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
 | |
| *           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
 | |
| *           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
 | |
| *           the array  A  must contain the  symmetric matrix,  such that
 | |
| *           when  UPLO = 'U' or 'u', the leading m by m upper triangular
 | |
| *           part of the array  A  must contain the upper triangular part
 | |
| *           of the  symmetric matrix and the  strictly  lower triangular
 | |
| *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | |
| *           the leading  m by m  lower triangular part  of the  array  A
 | |
| *           must  contain  the  lower triangular part  of the  symmetric
 | |
| *           matrix and the  strictly upper triangular part of  A  is not
 | |
| *           referenced.
 | |
| *           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
 | |
| *           the array  A  must contain the  symmetric matrix,  such that
 | |
| *           when  UPLO = 'U' or 'u', the leading n by n upper triangular
 | |
| *           part of the array  A  must contain the upper triangular part
 | |
| *           of the  symmetric matrix and the  strictly  lower triangular
 | |
| *           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
 | |
| *           the leading  n by n  lower triangular part  of the  array  A
 | |
| *           must  contain  the  lower triangular part  of the  symmetric
 | |
| *           matrix and the  strictly upper triangular part of  A  is not
 | |
| *           referenced.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
 | |
| *           LDA must be at least  max( 1, m ), otherwise  LDA must be at
 | |
| *           least  max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  B      - REAL             array of DIMENSION ( LDB, n ).
 | |
| *           Before entry, the leading  m by n part of the array  B  must
 | |
| *           contain the matrix B.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDB    - INTEGER.
 | |
| *           On entry, LDB specifies the first dimension of B as declared
 | |
| *           in  the  calling  (sub)  program.   LDB  must  be  at  least
 | |
| *           max( 1, m ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - REAL            .
 | |
| *           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
 | |
| *           supplied as zero then C need not be set on input.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  C      - REAL             array of DIMENSION ( LDC, n ).
 | |
| *           Before entry, the leading  m by n  part of the array  C must
 | |
| *           contain the matrix  C,  except when  beta  is zero, in which
 | |
| *           case C need not be set on entry.
 | |
| *           On exit, the array  C  is overwritten by the  m by n updated
 | |
| *           matrix.
 | |
| *
 | |
| *  LDC    - INTEGER.
 | |
| *           On entry, LDC specifies the first dimension of C as declared
 | |
| *           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *           max( 1, m ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 3 Blas routine.
 | |
| *
 | |
| *  -- Written on 8-February-1989.
 | |
| *     Jack Dongarra, Argonne National Laboratory.
 | |
| *     Iain Duff, AERE Harwell.
 | |
| *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, INFO, J, K, NROWA
 | |
|       REAL               TEMP1, TEMP2
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE         , ZERO
 | |
|       PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Set NROWA as the number of rows of A.
 | |
| *
 | |
|       IF( LSAME( SIDE, 'L' ) )THEN
 | |
|          NROWA = M
 | |
|       ELSE
 | |
|          NROWA = N
 | |
|       END IF
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF(      ( .NOT.LSAME( SIDE, 'L' ) ).AND.
 | |
|      $         ( .NOT.LSAME( SIDE, 'R' ) )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( ( .NOT.UPPER              ).AND.
 | |
|      $         ( .NOT.LSAME( UPLO, 'L' ) )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( M  .LT.0               )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( N  .LT.0               )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
 | |
|          INFO = 9
 | |
|       ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
 | |
|          INFO = 12
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'SSYMM ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
 | |
|      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF( ALPHA.EQ.ZERO )THEN
 | |
|          IF( BETA.EQ.ZERO )THEN
 | |
|             DO 20, J = 1, N
 | |
|                DO 10, I = 1, M
 | |
|                   C( I, J ) = ZERO
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
|             DO 40, J = 1, N
 | |
|                DO 30, I = 1, M
 | |
|                   C( I, J ) = BETA*C( I, J )
 | |
|    30          CONTINUE
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF( LSAME( SIDE, 'L' ) )THEN
 | |
| *
 | |
| *        Form  C := alpha*A*B + beta*C.
 | |
| *
 | |
|          IF( UPPER )THEN
 | |
|             DO 70, J = 1, N
 | |
|                DO 60, I = 1, M
 | |
|                   TEMP1 = ALPHA*B( I, J )
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 50, K = 1, I - 1
 | |
|                      C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
 | |
|                      TEMP2     = TEMP2     + B( K, J )*A( K, I )
 | |
|    50             CONTINUE
 | |
|                   IF( BETA.EQ.ZERO )THEN
 | |
|                      C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
 | |
|                   ELSE
 | |
|                      C( I, J ) = BETA *C( I, J ) +
 | |
|      $                           TEMP1*A( I, I ) + ALPHA*TEMP2
 | |
|                   END IF
 | |
|    60          CONTINUE
 | |
|    70       CONTINUE
 | |
|          ELSE
 | |
|             DO 100, J = 1, N
 | |
|                DO 90, I = M, 1, -1
 | |
|                   TEMP1 = ALPHA*B( I, J )
 | |
|                   TEMP2 = ZERO
 | |
|                   DO 80, K = I + 1, M
 | |
|                      C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
 | |
|                      TEMP2     = TEMP2     + B( K, J )*A( K, I )
 | |
|    80             CONTINUE
 | |
|                   IF( BETA.EQ.ZERO )THEN
 | |
|                      C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
 | |
|                   ELSE
 | |
|                      C( I, J ) = BETA *C( I, J ) +
 | |
|      $                           TEMP1*A( I, I ) + ALPHA*TEMP2
 | |
|                   END IF
 | |
|    90          CONTINUE
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C := alpha*B*A + beta*C.
 | |
| *
 | |
|          DO 170, J = 1, N
 | |
|             TEMP1 = ALPHA*A( J, J )
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 110, I = 1, M
 | |
|                   C( I, J ) = TEMP1*B( I, J )
 | |
|   110          CONTINUE
 | |
|             ELSE
 | |
|                DO 120, I = 1, M
 | |
|                   C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
 | |
|   120          CONTINUE
 | |
|             END IF
 | |
|             DO 140, K = 1, J - 1
 | |
|                IF( UPPER )THEN
 | |
|                   TEMP1 = ALPHA*A( K, J )
 | |
|                ELSE
 | |
|                   TEMP1 = ALPHA*A( J, K )
 | |
|                END IF
 | |
|                DO 130, I = 1, M
 | |
|                   C( I, J ) = C( I, J ) + TEMP1*B( I, K )
 | |
|   130          CONTINUE
 | |
|   140       CONTINUE
 | |
|             DO 160, K = J + 1, N
 | |
|                IF( UPPER )THEN
 | |
|                   TEMP1 = ALPHA*A( J, K )
 | |
|                ELSE
 | |
|                   TEMP1 = ALPHA*A( K, J )
 | |
|                END IF
 | |
|                DO 150, I = 1, M
 | |
|                   C( I, J ) = C( I, J ) + TEMP1*B( I, K )
 | |
|   150          CONTINUE
 | |
|   160       CONTINUE
 | |
|   170    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSYMM .
 | |
| *
 | |
|       END
 |