380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CTPSVF( UPLO, TRANS, DIAG, N, AP, X, INCX )
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCX, N
 | |
|       CHARACTER*1        DIAG, TRANS, UPLO
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            AP( * ), X( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  CTPSV  solves one of the systems of equations
 | |
| *
 | |
| *     A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,
 | |
| *
 | |
| *  where b and x are n element vectors and A is an n by n unit, or
 | |
| *  non-unit, upper or lower triangular matrix, supplied in packed form.
 | |
| *
 | |
| *  No test for singularity or near-singularity is included in this
 | |
| *  routine. Such tests must be performed before calling this routine.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the matrix is an upper or
 | |
| *           lower triangular matrix as follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry, TRANS specifies the equations to be solved as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   A*x = b.
 | |
| *
 | |
| *              TRANS = 'T' or 't'   A'*x = b.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   conjg( A' )*x = b.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  DIAG   - CHARACTER*1.
 | |
| *           On entry, DIAG specifies whether or not A is unit
 | |
| *           triangular as follows:
 | |
| *
 | |
| *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
 | |
| *
 | |
| *              DIAG = 'N' or 'n'   A is not assumed to be unit
 | |
| *                                  triangular.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  AP     - COMPLEX          array of DIMENSION at least
 | |
| *           ( ( n*( n + 1 ) )/2 ).
 | |
| *           Before entry with  UPLO = 'U' or 'u', the array AP must
 | |
| *           contain the upper triangular matrix packed sequentially,
 | |
| *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 | |
| *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
 | |
| *           respectively, and so on.
 | |
| *           Before entry with UPLO = 'L' or 'l', the array AP must
 | |
| *           contain the lower triangular matrix packed sequentially,
 | |
| *           column by column, so that AP( 1 ) contains a( 1, 1 ),
 | |
| *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
 | |
| *           respectively, and so on.
 | |
| *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
 | |
| *           A are not referenced, but are assumed to be unity.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - COMPLEX          array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element right-hand side vector b. On exit, X is overwritten
 | |
| *           with the solution vector x.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ZERO
 | |
|       PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX            TEMP
 | |
|       INTEGER            I, INFO, IX, J, JX, K, KK, KX
 | |
|       LOGICAL            NOCONJ, NOUNIT
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CONJG
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO , 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO , 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'T' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'R' ).AND.
 | |
|      $         .NOT.LSAME( TRANS, 'C' )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
 | |
|      $         .NOT.LSAME( DIAG , 'N' )      )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'CTPSV ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       NOCONJ = LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
 | |
|       NOUNIT = LSAME( DIAG , 'N' )
 | |
| *
 | |
| *     Set up the start point in X if the increment is not unity. This
 | |
| *     will be  ( N - 1 )*INCX  too small for descending loops.
 | |
| *
 | |
|       IF( INCX.LE.0 )THEN
 | |
|          KX = 1 - ( N - 1 )*INCX
 | |
|       ELSE IF( INCX.NE.1 )THEN
 | |
|          KX = 1
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of AP are
 | |
| *     accessed sequentially with one pass through AP.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) .OR.LSAME( TRANS, 'R' ))THEN
 | |
| *
 | |
| *        Form  x := inv( A )*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             KK = ( N*( N + 1 ) )/2
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 20, J = N, 1, -1
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      IF( NOCONJ )THEN
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( J ) = X( J )/AP( KK )
 | |
|                      ELSE
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( J ) = X( J )/CONJG(AP( KK ))
 | |
|                      END IF
 | |
| 
 | |
|                      TEMP = X( J )
 | |
|                      K    = KK     - 1
 | |
|                      DO 10, I = J - 1, 1, -1
 | |
|                      IF( NOCONJ )THEN
 | |
|                         X( I ) = X( I ) - TEMP*AP( K )
 | |
|                      ELSE
 | |
|                         X( I ) = X( I ) - TEMP*CONJG(AP( K ))
 | |
|                      END IF
 | |
|                      K      = K      - 1
 | |
|    10                CONTINUE
 | |
|                   END IF
 | |
|                   KK = KK - J
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX + ( N - 1 )*INCX
 | |
|                DO 40, J = N, 1, -1
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      IF( NOCONJ )THEN
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( JX ) = X( JX )/AP( KK )
 | |
|                      ELSE
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( JX ) = X( JX )/CONJG(AP( KK ))
 | |
|                      END IF
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = JX
 | |
|                      DO 30, K = KK - 1, KK - J + 1, -1
 | |
|                         IX      = IX      - INCX
 | |
|                      IF( NOCONJ )THEN
 | |
|                         X( IX ) = X( IX ) - TEMP*AP( K )
 | |
|                      ELSE
 | |
|                         X( IX ) = X( IX ) - TEMP*CONJG(AP( K ))
 | |
|                      END IF
 | |
|    30                CONTINUE
 | |
|                   END IF
 | |
|                   JX = JX - INCX
 | |
|                   KK = KK - J
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             KK = 1
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 60, J = 1, N
 | |
|                   IF( X( J ).NE.ZERO )THEN
 | |
|                      IF( NOCONJ )THEN
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( J ) = X( J )/AP( KK )
 | |
|                      ELSE
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( J ) = X( J )/CONJG(AP( KK ))
 | |
|                      END IF
 | |
|                      TEMP = X( J )
 | |
|                      K    = KK     + 1
 | |
|                      DO 50, I = J + 1, N
 | |
|                         IF( NOCONJ )THEN
 | |
|                            X( I ) = X( I ) - TEMP*AP( K )
 | |
|                         ELSE
 | |
|                            X( I ) = X( I ) - TEMP*CONJG(AP( K ))
 | |
|                         END IF
 | |
|                         K      = K      + 1
 | |
|    50                CONTINUE
 | |
|                   END IF
 | |
|                   KK = KK + ( N - J + 1 )
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 80, J = 1, N
 | |
|                   IF( X( JX ).NE.ZERO )THEN
 | |
|                      IF( NOCONJ )THEN
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( JX ) = X( JX )/AP( KK )
 | |
|                      ELSE
 | |
|                         IF( NOUNIT )
 | |
|      $                       X( JX ) = X( JX )/CONJG(AP( KK ))
 | |
|                      END IF
 | |
|                      TEMP = X( JX )
 | |
|                      IX   = JX
 | |
|                      DO 70, K = KK + 1, KK + N - J
 | |
|                         IX      = IX      + INCX
 | |
|                      IF( NOCONJ )THEN
 | |
|                         X( IX ) = X( IX ) - TEMP*AP( K )
 | |
|                      ELSE
 | |
|                         X( IX ) = X( IX ) - TEMP*CONJG(AP( K ))
 | |
|                      END IF
 | |
|    70                CONTINUE
 | |
|                   END IF
 | |
|                   JX = JX + INCX
 | |
|                   KK = KK + ( N - J + 1 )
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) )THEN
 | |
|             KK = 1
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 110, J = 1, N
 | |
|                   TEMP = X( J )
 | |
|                   K    = KK
 | |
|                   IF( NOCONJ )THEN
 | |
|                      DO 90, I = 1, J - 1
 | |
|                         TEMP = TEMP - AP( K )*X( I )
 | |
|                         K    = K    + 1
 | |
|    90                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/AP( KK + J - 1 )
 | |
|                   ELSE
 | |
|                      DO 100, I = 1, J - 1
 | |
|                         TEMP = TEMP - CONJG( AP( K ) )*X( I )
 | |
|                         K    = K    + 1
 | |
|   100                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/CONJG( AP( KK + J - 1 ) )
 | |
|                   END IF
 | |
|                   X( J ) = TEMP
 | |
|                   KK     = KK   + J
 | |
|   110          CONTINUE
 | |
|             ELSE
 | |
|                JX = KX
 | |
|                DO 140, J = 1, N
 | |
|                   TEMP = X( JX )
 | |
|                   IX   = KX
 | |
|                   IF( NOCONJ )THEN
 | |
|                      DO 120, K = KK, KK + J - 2
 | |
|                         TEMP = TEMP - AP( K )*X( IX )
 | |
|                         IX   = IX   + INCX
 | |
|   120                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/AP( KK + J - 1 )
 | |
|                   ELSE
 | |
|                      DO 130, K = KK, KK + J - 2
 | |
|                         TEMP = TEMP - CONJG( AP( K ) )*X( IX )
 | |
|                         IX   = IX   + INCX
 | |
|   130                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/CONJG( AP( KK + J - 1 ) )
 | |
|                   END IF
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   + INCX
 | |
|                   KK      = KK   + J
 | |
|   140          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             KK = ( N*( N + 1 ) )/2
 | |
|             IF( INCX.EQ.1 )THEN
 | |
|                DO 170, J = N, 1, -1
 | |
|                   TEMP = X( J )
 | |
|                   K    = KK
 | |
|                   IF( NOCONJ )THEN
 | |
|                      DO 150, I = N, J + 1, -1
 | |
|                         TEMP = TEMP - AP( K )*X( I )
 | |
|                         K    = K    - 1
 | |
|   150                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/AP( KK - N + J )
 | |
|                   ELSE
 | |
|                      DO 160, I = N, J + 1, -1
 | |
|                         TEMP = TEMP - CONJG( AP( K ) )*X( I )
 | |
|                         K    = K    - 1
 | |
|   160                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/CONJG( AP( KK - N + J ) )
 | |
|                   END IF
 | |
|                   X( J ) = TEMP
 | |
|                   KK     = KK   - ( N - J + 1 )
 | |
|   170          CONTINUE
 | |
|             ELSE
 | |
|                KX = KX + ( N - 1 )*INCX
 | |
|                JX = KX
 | |
|                DO 200, J = N, 1, -1
 | |
|                   TEMP = X( JX )
 | |
|                   IX   = KX
 | |
|                   IF( NOCONJ )THEN
 | |
|                      DO 180, K = KK, KK - ( N - ( J + 1 ) ), -1
 | |
|                         TEMP = TEMP - AP( K )*X( IX )
 | |
|                         IX   = IX   - INCX
 | |
|   180                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/AP( KK - N + J )
 | |
|                   ELSE
 | |
|                      DO 190, K = KK, KK - ( N - ( J + 1 ) ), -1
 | |
|                         TEMP = TEMP - CONJG( AP( K ) )*X( IX )
 | |
|                         IX   = IX   - INCX
 | |
|   190                CONTINUE
 | |
|                      IF( NOUNIT )
 | |
|      $                  TEMP = TEMP/CONJG( AP( KK - N + J ) )
 | |
|                   END IF
 | |
|                   X( JX ) = TEMP
 | |
|                   JX      = JX   - INCX
 | |
|                   KK      = KK   - ( N - J + 1 )
 | |
|   200          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTPSV .
 | |
| *
 | |
|       END
 |