250 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CHER2F ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX            ALPHA
 | |
|       INTEGER            INCX, INCY, LDA, N
 | |
|       CHARACTER*1        UPLO
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  CHER2  performs the hermitian rank 2 operation
 | |
| *
 | |
| *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
 | |
| *
 | |
| *  where alpha is a scalar, x and y are n element vectors and A is an n
 | |
| *  by n hermitian matrix.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On entry, UPLO specifies whether the upper or lower
 | |
| *           triangular part of the array A is to be referenced as
 | |
| *           follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry, N specifies the order of the matrix A.
 | |
| *           N must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - COMPLEX         .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  X      - COMPLEX          array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCX ) ).
 | |
| *           Before entry, the incremented array X must contain the n
 | |
| *           element vector x.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  INCX   - INTEGER.
 | |
| *           On entry, INCX specifies the increment for the elements of
 | |
| *           X. INCX must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  Y      - COMPLEX          array of dimension at least
 | |
| *           ( 1 + ( n - 1 )*abs( INCY ) ).
 | |
| *           Before entry, the incremented array Y must contain the n
 | |
| *           element vector y.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  INCY   - INTEGER.
 | |
| *           On entry, INCY specifies the increment for the elements of
 | |
| *           Y. INCY must not be zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX          array of DIMENSION ( LDA, n ).
 | |
| *           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | |
| *           upper triangular part of the array A must contain the upper
 | |
| *           triangular part of the hermitian matrix and the strictly
 | |
| *           lower triangular part of A is not referenced. On exit, the
 | |
| *           upper triangular part of the array A is overwritten by the
 | |
| *           upper triangular part of the updated matrix.
 | |
| *           Before entry with UPLO = 'L' or 'l', the leading n by n
 | |
| *           lower triangular part of the array A must contain the lower
 | |
| *           triangular part of the hermitian matrix and the strictly
 | |
| *           upper triangular part of A is not referenced. On exit, the
 | |
| *           lower triangular part of the array A is overwritten by the
 | |
| *           lower triangular part of the updated matrix.
 | |
| *           Note that the imaginary parts of the diagonal elements need
 | |
| *           not be set, they are assumed to be zero, and on exit they
 | |
| *           are set to zero.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in the calling (sub) program. LDA must be at least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 2 Blas routine.
 | |
| *
 | |
| *  -- Written on 22-October-1986.
 | |
| *     Jack Dongarra, Argonne National Lab.
 | |
| *     Jeremy Du Croz, Nag Central Office.
 | |
| *     Sven Hammarling, Nag Central Office.
 | |
| *     Richard Hanson, Sandia National Labs.
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ZERO
 | |
|       PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX            TEMP1, TEMP2
 | |
|       INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CONJG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
 | |
|      $         .NOT.LSAME( UPLO, 'L' )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( N.LT.0 )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( INCX.EQ.0 )THEN
 | |
|          INFO = 5
 | |
|       ELSE IF( INCY.EQ.0 )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | |
|          INFO = 9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'CHER2 ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set up the start points in X and Y if the increments are not both
 | |
| *     unity.
 | |
| *
 | |
|       IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
 | |
|          IF( INCX.GT.0 )THEN
 | |
|             KX = 1
 | |
|          ELSE
 | |
|             KX = 1 - ( N - 1 )*INCX
 | |
|          END IF
 | |
|          IF( INCY.GT.0 )THEN
 | |
|             KY = 1
 | |
|          ELSE
 | |
|             KY = 1 - ( N - 1 )*INCY
 | |
|          END IF
 | |
|          JX = KX
 | |
|          JY = KY
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations. In this version the elements of A are
 | |
| *     accessed sequentially with one pass through the triangular part
 | |
| *     of A.
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) )THEN
 | |
| *
 | |
| *        Form  A  when A is stored in the upper triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | |
|             DO 20, J = 1, N
 | |
|                IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
 | |
|                   TEMP1 = ALPHA*CONJG( Y( J ) )
 | |
|                   TEMP2 = CONJG( ALPHA*X( J ) )
 | |
|                   DO 10, I = 1, J - 1
 | |
|                      A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
 | |
|    10             CONTINUE
 | |
|                   A( J, J ) = REAL( A( J, J ) ) +
 | |
|      $                        REAL( X( J )*TEMP1 + Y( J )*TEMP2 )
 | |
|                ELSE
 | |
|                   A( J, J ) = REAL( A( J, J ) )
 | |
|                END IF
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
|             DO 40, J = 1, N
 | |
|                IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
 | |
|                   TEMP1 = ALPHA*CONJG( Y( JY ) )
 | |
|                   TEMP2 = CONJG( ALPHA*X( JX ) )
 | |
|                   IX    = KX
 | |
|                   IY    = KY
 | |
|                   DO 30, I = 1, J - 1
 | |
|                      A( I, J ) = A( I, J ) + X( IX )*TEMP1
 | |
|      $                                     + Y( IY )*TEMP2
 | |
|                      IX        = IX        + INCX
 | |
|                      IY        = IY        + INCY
 | |
|    30             CONTINUE
 | |
|                   A( J, J ) = REAL( A( J, J ) ) +
 | |
|      $                        REAL( X( JX )*TEMP1 + Y( JY )*TEMP2 )
 | |
|                ELSE
 | |
|                   A( J, J ) = REAL( A( J, J ) )
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|                JY = JY + INCY
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  A  when A is stored in the lower triangle.
 | |
| *
 | |
|          IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
 | |
|             DO 60, J = 1, N
 | |
|                IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
 | |
|                   TEMP1     = ALPHA*CONJG( Y( J ) )
 | |
|                   TEMP2     = CONJG( ALPHA*X( J ) )
 | |
|                   A( J, J ) = REAL( A( J, J ) ) +
 | |
|      $                        REAL( X( J )*TEMP1 + Y( J )*TEMP2 )
 | |
|                   DO 50, I = J + 1, N
 | |
|                      A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
 | |
|    50             CONTINUE
 | |
|                ELSE
 | |
|                   A( J, J ) = REAL( A( J, J ) )
 | |
|                END IF
 | |
|    60       CONTINUE
 | |
|          ELSE
 | |
|             DO 80, J = 1, N
 | |
|                IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
 | |
|                   TEMP1     = ALPHA*CONJG( Y( JY ) )
 | |
|                   TEMP2     = CONJG( ALPHA*X( JX ) )
 | |
|                   A( J, J ) = REAL( A( J, J ) ) +
 | |
|      $                        REAL( X( JX )*TEMP1 + Y( JY )*TEMP2 )
 | |
|                   IX        = JX
 | |
|                   IY        = JY
 | |
|                   DO 70, I = J + 1, N
 | |
|                      IX        = IX        + INCX
 | |
|                      IY        = IY        + INCY
 | |
|                      A( I, J ) = A( I, J ) + X( IX )*TEMP1
 | |
|      $                                     + Y( IY )*TEMP2
 | |
|    70             CONTINUE
 | |
|                ELSE
 | |
|                   A( J, J ) = REAL( A( J, J ) )
 | |
|                END IF
 | |
|                JX = JX + INCX
 | |
|                JY = JY + INCY
 | |
|    80       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHER2 .
 | |
| *
 | |
|       END
 |