299 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			299 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> CHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CHEEV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheev.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheev.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheev.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 | 
						|
*                         INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, LDA, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * ), W( * )
 | 
						|
*       COMPLEX            A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHEEV computes all eigenvalues and, optionally, eigenvectors of a
 | 
						|
*> complex Hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 | 
						|
*>          leading N-by-N upper triangular part of A contains the
 | 
						|
*>          upper triangular part of the matrix A.  If UPLO = 'L',
 | 
						|
*>          the leading N-by-N lower triangular part of A contains
 | 
						|
*>          the lower triangular part of the matrix A.
 | 
						|
*>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 | 
						|
*>          orthonormal eigenvectors of the matrix A.
 | 
						|
*>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
 | 
						|
*>          or the upper triangle (if UPLO='U') of A, including the
 | 
						|
*>          diagonal, is destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= max(1,2*N-1).
 | 
						|
*>          For optimal efficiency, LWORK >= (NB+1)*N,
 | 
						|
*>          where NB is the blocksize for CHETRD returned by ILAENV.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (max(1, 3*N-2))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the algorithm failed to converge; i
 | 
						|
*>                off-diagonal elements of an intermediate tridiagonal
 | 
						|
*>                form did not converge to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexHEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 | 
						|
     $                  INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, LDA, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * ), W( * )
 | 
						|
      COMPLEX            A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E0, 0.0E0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER, LQUERY, WANTZ
 | 
						|
      INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
 | 
						|
     $                   LLWORK, LWKOPT, NB
 | 
						|
      REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | 
						|
     $                   SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               CLANHE, SLAMCH
 | 
						|
      EXTERNAL           ILAENV, LSAME, CLANHE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CHETRD, CLASCL, CSTEQR, CUNGTR, SSCAL, SSTERF,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
 | 
						|
         LWKOPT = MAX( 1, ( NB+1 )*N )
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY )
 | 
						|
     $      INFO = -8
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CHEEV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         W( 1 ) = A( 1, 1 )
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         IF( WANTZ )
 | 
						|
     $      A( 1, 1 ) = CONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants.
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
      SMLNUM = SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      RMIN = SQRT( SMLNUM )
 | 
						|
      RMAX = SQRT( BIGNUM )
 | 
						|
*
 | 
						|
*     Scale matrix to allowable range, if necessary.
 | 
						|
*
 | 
						|
      ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK )
 | 
						|
      ISCALE = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMIN / ANRM
 | 
						|
      ELSE IF( ANRM.GT.RMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMAX / ANRM
 | 
						|
      END IF
 | 
						|
      IF( ISCALE.EQ.1 )
 | 
						|
     $   CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*     Call CHETRD to reduce Hermitian matrix to tridiagonal form.
 | 
						|
*
 | 
						|
      INDE = 1
 | 
						|
      INDTAU = 1
 | 
						|
      INDWRK = INDTAU + N
 | 
						|
      LLWORK = LWORK - INDWRK + 1
 | 
						|
      CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
 | 
						|
     $             WORK( INDWRK ), LLWORK, IINFO )
 | 
						|
*
 | 
						|
*     For eigenvalues only, call SSTERF.  For eigenvectors, first call
 | 
						|
*     CUNGTR to generate the unitary matrix, then call CSTEQR.
 | 
						|
*
 | 
						|
      IF( .NOT.WANTZ ) THEN
 | 
						|
         CALL SSTERF( N, W, RWORK( INDE ), INFO )
 | 
						|
      ELSE
 | 
						|
         CALL CUNGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
 | 
						|
     $                LLWORK, IINFO )
 | 
						|
         INDWRK = INDE + N
 | 
						|
         CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), A, LDA,
 | 
						|
     $                RWORK( INDWRK ), INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If matrix was scaled, then rescale eigenvalues appropriately.
 | 
						|
*
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            IMAX = N
 | 
						|
         ELSE
 | 
						|
            IMAX = INFO - 1
 | 
						|
         END IF
 | 
						|
         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set WORK(1) to optimal complex workspace size.
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHEEV
 | 
						|
*
 | 
						|
      END
 |