911 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			911 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CHETF2_ROOK + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetf2_rook.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetf2_rook.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetf2_rook.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CHETF2_ROOK computes the factorization of a complex Hermitian matrix A
 | 
						|
*> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
 | 
						|
*>
 | 
						|
*>    A = U*D*U**H  or  A = L*D*L**H
 | 
						|
*>
 | 
						|
*> where U (or L) is a product of permutation and unit upper (lower)
 | 
						|
*> triangular matrices, U**H is the conjugate transpose of U, and D is
 | 
						|
*> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 | 
						|
*>
 | 
						|
*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          Hermitian matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          n-by-n upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading n-by-n lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, the block diagonal matrix D and the multipliers used
 | 
						|
*>          to obtain the factor U or L (see below for further details).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges and the block structure of D.
 | 
						|
*>
 | 
						|
*>          If UPLO = 'U':
 | 
						|
*>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 | 
						|
*>             interchanged and D(k,k) is a 1-by-1 diagonal block.
 | 
						|
*>
 | 
						|
*>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
 | 
						|
*>             columns k and -IPIV(k) were interchanged and rows and
 | 
						|
*>             columns k-1 and -IPIV(k-1) were inerchaged,
 | 
						|
*>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
 | 
						|
*>
 | 
						|
*>          If UPLO = 'L':
 | 
						|
*>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
 | 
						|
*>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
 | 
						|
*>
 | 
						|
*>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
 | 
						|
*>             columns k and -IPIV(k) were interchanged and rows and
 | 
						|
*>             columns k+1 and -IPIV(k+1) were inerchaged,
 | 
						|
*>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -k, the k-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
 | 
						|
*>               has been completed, but the block diagonal matrix D is
 | 
						|
*>               exactly singular, and division by zero will occur if it
 | 
						|
*>               is used to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date November 2013
 | 
						|
*
 | 
						|
*> \ingroup complexHEcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  If UPLO = 'U', then A = U*D*U**H, where
 | 
						|
*>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 | 
						|
*>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 | 
						|
*>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | 
						|
*>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | 
						|
*>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 | 
						|
*>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | 
						|
*>
 | 
						|
*>             (   I    v    0   )   k-s
 | 
						|
*>     U(k) =  (   0    I    0   )   s
 | 
						|
*>             (   0    0    I   )   n-k
 | 
						|
*>                k-s   s   n-k
 | 
						|
*>
 | 
						|
*>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 | 
						|
*>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 | 
						|
*>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 | 
						|
*>
 | 
						|
*>  If UPLO = 'L', then A = L*D*L**H, where
 | 
						|
*>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 | 
						|
*>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 | 
						|
*>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | 
						|
*>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | 
						|
*>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 | 
						|
*>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | 
						|
*>
 | 
						|
*>             (   I    0     0   )  k-1
 | 
						|
*>     L(k) =  (   0    I     0   )  s
 | 
						|
*>             (   0    v     I   )  n-k-s+1
 | 
						|
*>                k-1   s  n-k-s+1
 | 
						|
*>
 | 
						|
*>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
 | 
						|
*>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
 | 
						|
*>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  November 2013,  Igor Kozachenko,
 | 
						|
*>                  Computer Science Division,
 | 
						|
*>                  University of California, Berkeley
 | 
						|
*>
 | 
						|
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | 
						|
*>                  School of Mathematics,
 | 
						|
*>                  University of Manchester
 | 
						|
*>
 | 
						|
*>  01-01-96 - Based on modifications by
 | 
						|
*>    J. Lewis, Boeing Computer Services Company
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.5.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2013
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ======================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      REAL               EIGHT, SEVTEN
 | 
						|
      PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            DONE, UPPER
 | 
						|
      INTEGER            I, II, IMAX, ITEMP, J, JMAX, K, KK, KP, KSTEP,
 | 
						|
     $                   P
 | 
						|
      REAL               ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, STEMP,
 | 
						|
     $                   ROWMAX, TT, SFMIN
 | 
						|
      COMPLEX            D12, D21, T, WK, WKM1, WKP1, Z
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
*
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      REAL               SLAMCH, SLAPY2
 | 
						|
      EXTERNAL           LSAME, ICAMAX, SLAMCH, SLAPY2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, CSSCAL, CHER, CSWAP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CHETF2_ROOK', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize ALPHA for use in choosing pivot block size.
 | 
						|
*
 | 
						|
      ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | 
						|
*
 | 
						|
*     Compute machine safe minimum
 | 
						|
*
 | 
						|
      SFMIN = SLAMCH( 'S' )
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Factorize A as U*D*U**H using the upper triangle of A
 | 
						|
*
 | 
						|
*        K is the main loop index, decreasing from N to 1 in steps of
 | 
						|
*        1 or 2
 | 
						|
*
 | 
						|
         K = N
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        If K < 1, exit from loop
 | 
						|
*
 | 
						|
         IF( K.LT.1 )
 | 
						|
     $      GO TO 70
 | 
						|
         KSTEP = 1
 | 
						|
         P = K
 | 
						|
*
 | 
						|
*        Determine rows and columns to be interchanged and whether
 | 
						|
*        a 1-by-1 or 2-by-2 pivot block will be used
 | 
						|
*
 | 
						|
         ABSAKK = ABS( REAL( A( K, K ) ) )
 | 
						|
*
 | 
						|
*        IMAX is the row-index of the largest off-diagonal element in
 | 
						|
*        column K, and COLMAX is its absolute value.
 | 
						|
*        Determine both COLMAX and IMAX.
 | 
						|
*
 | 
						|
         IF( K.GT.1 ) THEN
 | 
						|
            IMAX = ICAMAX( K-1, A( 1, K ), 1 )
 | 
						|
            COLMAX = CABS1( A( IMAX, K ) )
 | 
						|
         ELSE
 | 
						|
            COLMAX = ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
 | 
						|
*
 | 
						|
*           Column K is zero or underflow: set INFO and continue
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = K
 | 
						|
            KP = K
 | 
						|
            A( K, K ) = REAL( A( K, K ) )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
*           BEGIN pivot search
 | 
						|
*
 | 
						|
*           Case(1)
 | 
						|
*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | 
						|
*           (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | 
						|
*
 | 
						|
*              no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
               KP = K
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               DONE = .FALSE.
 | 
						|
*
 | 
						|
*              Loop until pivot found
 | 
						|
*
 | 
						|
   12          CONTINUE
 | 
						|
*
 | 
						|
*                 BEGIN pivot search loop body
 | 
						|
*
 | 
						|
*
 | 
						|
*                 JMAX is the column-index of the largest off-diagonal
 | 
						|
*                 element in row IMAX, and ROWMAX is its absolute value.
 | 
						|
*                 Determine both ROWMAX and JMAX.
 | 
						|
*
 | 
						|
                  IF( IMAX.NE.K ) THEN
 | 
						|
                     JMAX = IMAX + ICAMAX( K-IMAX, A( IMAX, IMAX+1 ),
 | 
						|
     $                                     LDA )
 | 
						|
                     ROWMAX = CABS1( A( IMAX, JMAX ) )
 | 
						|
                  ELSE
 | 
						|
                     ROWMAX = ZERO
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( IMAX.GT.1 ) THEN
 | 
						|
                     ITEMP = ICAMAX( IMAX-1, A( 1, IMAX ), 1 )
 | 
						|
                     STEMP = CABS1( A( ITEMP, IMAX ) )
 | 
						|
                     IF( STEMP.GT.ROWMAX ) THEN
 | 
						|
                        ROWMAX = STEMP
 | 
						|
                        JMAX = ITEMP
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Case(2)
 | 
						|
*                 Equivalent to testing for
 | 
						|
*                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  IF( .NOT.( ABS( REAL( A( IMAX, IMAX ) ) )
 | 
						|
     $                       .LT.ALPHA*ROWMAX ) ) THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K and IMAX,
 | 
						|
*                    use 1-by-1 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
                     DONE = .TRUE.
 | 
						|
*
 | 
						|
*                 Case(3)
 | 
						|
*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | 
						|
     $            THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K-1 and IMAX,
 | 
						|
*                    use 2-by-2 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
                     KSTEP = 2
 | 
						|
                     DONE = .TRUE.
 | 
						|
*
 | 
						|
*                 Case(4)
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Pivot not found: set params and repeat
 | 
						|
*
 | 
						|
                     P = IMAX
 | 
						|
                     COLMAX = ROWMAX
 | 
						|
                     IMAX = JMAX
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 END pivot search loop body
 | 
						|
*
 | 
						|
               IF( .NOT.DONE ) GOTO 12
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           END pivot search
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
*           KK is the column of A where pivoting step stopped
 | 
						|
*
 | 
						|
            KK = K - KSTEP + 1
 | 
						|
*
 | 
						|
*           For only a 2x2 pivot, interchange rows and columns K and P
 | 
						|
*           in the leading submatrix A(1:k,1:k)
 | 
						|
*
 | 
						|
            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | 
						|
*              (1) Swap columnar parts
 | 
						|
               IF( P.GT.1 )
 | 
						|
     $            CALL CSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
 | 
						|
*              (2) Swap and conjugate middle parts
 | 
						|
               DO 14 J = P + 1, K - 1
 | 
						|
                  T = CONJG( A( J, K ) )
 | 
						|
                  A( J, K ) = CONJG( A( P, J ) )
 | 
						|
                  A( P, J ) = T
 | 
						|
   14          CONTINUE
 | 
						|
*              (3) Swap and conjugate corner elements at row-col interserction
 | 
						|
               A( P, K ) = CONJG( A( P, K ) )
 | 
						|
*              (4) Swap diagonal elements at row-col intersection
 | 
						|
               R1 = REAL( A( K, K ) )
 | 
						|
               A( K, K ) = REAL( A( P, P ) )
 | 
						|
               A( P, P ) = R1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           For both 1x1 and 2x2 pivots, interchange rows and
 | 
						|
*           columns KK and KP in the leading submatrix A(1:k,1:k)
 | 
						|
*
 | 
						|
            IF( KP.NE.KK ) THEN
 | 
						|
*              (1) Swap columnar parts
 | 
						|
               IF( KP.GT.1 )
 | 
						|
     $            CALL CSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
 | 
						|
*              (2) Swap and conjugate middle parts
 | 
						|
               DO 15 J = KP + 1, KK - 1
 | 
						|
                  T = CONJG( A( J, KK ) )
 | 
						|
                  A( J, KK ) = CONJG( A( KP, J ) )
 | 
						|
                  A( KP, J ) = T
 | 
						|
   15          CONTINUE
 | 
						|
*              (3) Swap and conjugate corner elements at row-col interserction
 | 
						|
               A( KP, KK ) = CONJG( A( KP, KK ) )
 | 
						|
*              (4) Swap diagonal elements at row-col intersection
 | 
						|
               R1 = REAL( A( KK, KK ) )
 | 
						|
               A( KK, KK ) = REAL( A( KP, KP ) )
 | 
						|
               A( KP, KP ) = R1
 | 
						|
*
 | 
						|
               IF( KSTEP.EQ.2 ) THEN
 | 
						|
*                 (*) Make sure that diagonal element of pivot is real
 | 
						|
                  A( K, K ) = REAL( A( K, K ) )
 | 
						|
*                 (5) Swap row elements
 | 
						|
                  T = A( K-1, K )
 | 
						|
                  A( K-1, K ) = A( KP, K )
 | 
						|
                  A( KP, K ) = T
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*              (*) Make sure that diagonal element of pivot is real
 | 
						|
               A( K, K ) = REAL( A( K, K ) )
 | 
						|
               IF( KSTEP.EQ.2 )
 | 
						|
     $            A( K-1, K-1 ) = REAL( A( K-1, K-1 ) )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Update the leading submatrix
 | 
						|
*
 | 
						|
            IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              1-by-1 pivot block D(k): column k now holds
 | 
						|
*
 | 
						|
*              W(k) = U(k)*D(k)
 | 
						|
*
 | 
						|
*              where U(k) is the k-th column of U
 | 
						|
*
 | 
						|
               IF( K.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                 Perform a rank-1 update of A(1:k-1,1:k-1) and
 | 
						|
*                 store U(k) in column k
 | 
						|
*
 | 
						|
                  IF( ABS( REAL( A( K, K ) ) ).GE.SFMIN ) THEN
 | 
						|
*
 | 
						|
*                    Perform a rank-1 update of A(1:k-1,1:k-1) as
 | 
						|
*                    A := A - U(k)*D(k)*U(k)**T
 | 
						|
*                       = A - W(k)*1/D(k)*W(k)**T
 | 
						|
*
 | 
						|
                     D11 = ONE / REAL( A( K, K ) )
 | 
						|
                     CALL CHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
 | 
						|
*
 | 
						|
*                    Store U(k) in column k
 | 
						|
*
 | 
						|
                     CALL CSSCAL( K-1, D11, A( 1, K ), 1 )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Store L(k) in column K
 | 
						|
*
 | 
						|
                     D11 = REAL( A( K, K ) )
 | 
						|
                     DO 16 II = 1, K - 1
 | 
						|
                        A( II, K ) = A( II, K ) / D11
 | 
						|
   16                CONTINUE
 | 
						|
*
 | 
						|
*                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | 
						|
*                    A := A - U(k)*D(k)*U(k)**T
 | 
						|
*                       = A - W(k)*(1/D(k))*W(k)**T
 | 
						|
*                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
 | 
						|
*
 | 
						|
                     CALL CHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2-by-2 pivot block D(k): columns k and k-1 now hold
 | 
						|
*
 | 
						|
*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | 
						|
*
 | 
						|
*              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | 
						|
*              of U
 | 
						|
*
 | 
						|
*              Perform a rank-2 update of A(1:k-2,1:k-2) as
 | 
						|
*
 | 
						|
*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
 | 
						|
*                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
 | 
						|
*
 | 
						|
*              and store L(k) and L(k+1) in columns k and k+1
 | 
						|
*
 | 
						|
               IF( K.GT.2 ) THEN
 | 
						|
*                 D = |A12|
 | 
						|
                  D = SLAPY2( REAL( A( K-1, K ) ),
 | 
						|
     $                AIMAG( A( K-1, K ) ) )
 | 
						|
                  D11 = A( K, K ) / D
 | 
						|
                  D22 = A( K-1, K-1 ) / D
 | 
						|
                  D12 = A( K-1, K ) / D
 | 
						|
                  TT = ONE / ( D11*D22-ONE )
 | 
						|
*
 | 
						|
                  DO 30 J = K - 2, 1, -1
 | 
						|
*
 | 
						|
*                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
 | 
						|
*
 | 
						|
                     WKM1 = TT*( D11*A( J, K-1 )-CONJG( D12 )*
 | 
						|
     $                      A( J, K ) )
 | 
						|
                     WK = TT*( D22*A( J, K )-D12*A( J, K-1 ) )
 | 
						|
*
 | 
						|
*                    Perform a rank-2 update of A(1:k-2,1:k-2)
 | 
						|
*
 | 
						|
                     DO 20 I = J, 1, -1
 | 
						|
                        A( I, J ) = A( I, J ) -
 | 
						|
     $                              ( A( I, K ) / D )*CONJG( WK ) -
 | 
						|
     $                              ( A( I, K-1 ) / D )*CONJG( WKM1 )
 | 
						|
   20                CONTINUE
 | 
						|
*
 | 
						|
*                    Store U(k) and U(k-1) in cols k and k-1 for row J
 | 
						|
*
 | 
						|
                     A( J, K ) = WK / D
 | 
						|
                     A( J, K-1 ) = WKM1 / D
 | 
						|
*                    (*) Make sure that diagonal element of pivot is real
 | 
						|
                     A( J, J ) = CMPLX( REAL( A( J, J ) ), ZERO )
 | 
						|
*
 | 
						|
   30             CONTINUE
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Store details of the interchanges in IPIV
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
            IPIV( K ) = KP
 | 
						|
         ELSE
 | 
						|
            IPIV( K ) = -P
 | 
						|
            IPIV( K-1 ) = -KP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Decrease K and return to the start of the main loop
 | 
						|
*
 | 
						|
         K = K - KSTEP
 | 
						|
         GO TO 10
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Factorize A as L*D*L**H using the lower triangle of A
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
*        If K > N, exit from loop
 | 
						|
*
 | 
						|
         IF( K.GT.N )
 | 
						|
     $      GO TO 70
 | 
						|
         KSTEP = 1
 | 
						|
         P = K
 | 
						|
*
 | 
						|
*        Determine rows and columns to be interchanged and whether
 | 
						|
*        a 1-by-1 or 2-by-2 pivot block will be used
 | 
						|
*
 | 
						|
         ABSAKK = ABS( REAL( A( K, K ) ) )
 | 
						|
*
 | 
						|
*        IMAX is the row-index of the largest off-diagonal element in
 | 
						|
*        column K, and COLMAX is its absolute value.
 | 
						|
*        Determine both COLMAX and IMAX.
 | 
						|
*
 | 
						|
         IF( K.LT.N ) THEN
 | 
						|
            IMAX = K + ICAMAX( N-K, A( K+1, K ), 1 )
 | 
						|
            COLMAX = CABS1( A( IMAX, K ) )
 | 
						|
         ELSE
 | 
						|
            COLMAX = ZERO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Column K is zero or underflow: set INFO and continue
 | 
						|
*
 | 
						|
            IF( INFO.EQ.0 )
 | 
						|
     $         INFO = K
 | 
						|
            KP = K
 | 
						|
            A( K, K ) = REAL( A( K, K ) )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
*           BEGIN pivot search
 | 
						|
*
 | 
						|
*           Case(1)
 | 
						|
*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | 
						|
*           (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
            IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | 
						|
*
 | 
						|
*              no interchange, use 1-by-1 pivot block
 | 
						|
*
 | 
						|
               KP = K
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               DONE = .FALSE.
 | 
						|
*
 | 
						|
*              Loop until pivot found
 | 
						|
*
 | 
						|
   42          CONTINUE
 | 
						|
*
 | 
						|
*                 BEGIN pivot search loop body
 | 
						|
*
 | 
						|
*
 | 
						|
*                 JMAX is the column-index of the largest off-diagonal
 | 
						|
*                 element in row IMAX, and ROWMAX is its absolute value.
 | 
						|
*                 Determine both ROWMAX and JMAX.
 | 
						|
*
 | 
						|
                  IF( IMAX.NE.K ) THEN
 | 
						|
                     JMAX = K - 1 + ICAMAX( IMAX-K, A( IMAX, K ), LDA )
 | 
						|
                     ROWMAX = CABS1( A( IMAX, JMAX ) )
 | 
						|
                  ELSE
 | 
						|
                     ROWMAX = ZERO
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( IMAX.LT.N ) THEN
 | 
						|
                     ITEMP = IMAX + ICAMAX( N-IMAX, A( IMAX+1, IMAX ),
 | 
						|
     $                                     1 )
 | 
						|
                     STEMP = CABS1( A( ITEMP, IMAX ) )
 | 
						|
                     IF( STEMP.GT.ROWMAX ) THEN
 | 
						|
                        ROWMAX = STEMP
 | 
						|
                        JMAX = ITEMP
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 Case(2)
 | 
						|
*                 Equivalent to testing for
 | 
						|
*                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  IF( .NOT.( ABS( REAL( A( IMAX, IMAX ) ) )
 | 
						|
     $                       .LT.ALPHA*ROWMAX ) ) THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K and IMAX,
 | 
						|
*                    use 1-by-1 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
                     DONE = .TRUE.
 | 
						|
*
 | 
						|
*                 Case(3)
 | 
						|
*                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | 
						|
*                 (used to handle NaN and Inf)
 | 
						|
*
 | 
						|
                  ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | 
						|
     $            THEN
 | 
						|
*
 | 
						|
*                    interchange rows and columns K+1 and IMAX,
 | 
						|
*                    use 2-by-2 pivot block
 | 
						|
*
 | 
						|
                     KP = IMAX
 | 
						|
                     KSTEP = 2
 | 
						|
                     DONE = .TRUE.
 | 
						|
*
 | 
						|
*                 Case(4)
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Pivot not found: set params and repeat
 | 
						|
*
 | 
						|
                     P = IMAX
 | 
						|
                     COLMAX = ROWMAX
 | 
						|
                     IMAX = JMAX
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*
 | 
						|
*                 END pivot search loop body
 | 
						|
*
 | 
						|
               IF( .NOT.DONE ) GOTO 42
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           END pivot search
 | 
						|
*
 | 
						|
*           ============================================================
 | 
						|
*
 | 
						|
*           KK is the column of A where pivoting step stopped
 | 
						|
*
 | 
						|
            KK = K + KSTEP - 1
 | 
						|
*
 | 
						|
*           For only a 2x2 pivot, interchange rows and columns K and P
 | 
						|
*           in the trailing submatrix A(k:n,k:n)
 | 
						|
*
 | 
						|
            IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | 
						|
*              (1) Swap columnar parts
 | 
						|
               IF( P.LT.N )
 | 
						|
     $            CALL CSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
 | 
						|
*              (2) Swap and conjugate middle parts
 | 
						|
               DO 44 J = K + 1, P - 1
 | 
						|
                  T = CONJG( A( J, K ) )
 | 
						|
                  A( J, K ) = CONJG( A( P, J ) )
 | 
						|
                  A( P, J ) = T
 | 
						|
   44          CONTINUE
 | 
						|
*              (3) Swap and conjugate corner elements at row-col interserction
 | 
						|
               A( P, K ) = CONJG( A( P, K ) )
 | 
						|
*              (4) Swap diagonal elements at row-col intersection
 | 
						|
               R1 = REAL( A( K, K ) )
 | 
						|
               A( K, K ) = REAL( A( P, P ) )
 | 
						|
               A( P, P ) = R1
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           For both 1x1 and 2x2 pivots, interchange rows and
 | 
						|
*           columns KK and KP in the trailing submatrix A(k:n,k:n)
 | 
						|
*
 | 
						|
            IF( KP.NE.KK ) THEN
 | 
						|
*              (1) Swap columnar parts
 | 
						|
               IF( KP.LT.N )
 | 
						|
     $            CALL CSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
 | 
						|
*              (2) Swap and conjugate middle parts
 | 
						|
               DO 45 J = KK + 1, KP - 1
 | 
						|
                  T = CONJG( A( J, KK ) )
 | 
						|
                  A( J, KK ) = CONJG( A( KP, J ) )
 | 
						|
                  A( KP, J ) = T
 | 
						|
   45          CONTINUE
 | 
						|
*              (3) Swap and conjugate corner elements at row-col interserction
 | 
						|
               A( KP, KK ) = CONJG( A( KP, KK ) )
 | 
						|
*              (4) Swap diagonal elements at row-col intersection
 | 
						|
               R1 = REAL( A( KK, KK ) )
 | 
						|
               A( KK, KK ) = REAL( A( KP, KP ) )
 | 
						|
               A( KP, KP ) = R1
 | 
						|
*
 | 
						|
               IF( KSTEP.EQ.2 ) THEN
 | 
						|
*                 (*) Make sure that diagonal element of pivot is real
 | 
						|
                  A( K, K ) = REAL( A( K, K ) )
 | 
						|
*                 (5) Swap row elements
 | 
						|
                  T = A( K+1, K )
 | 
						|
                  A( K+1, K ) = A( KP, K )
 | 
						|
                  A( KP, K ) = T
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
*              (*) Make sure that diagonal element of pivot is real
 | 
						|
               A( K, K ) = REAL( A( K, K ) )
 | 
						|
               IF( KSTEP.EQ.2 )
 | 
						|
     $            A( K+1, K+1 ) = REAL( A( K+1, K+1 ) )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Update the trailing submatrix
 | 
						|
*
 | 
						|
            IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              1-by-1 pivot block D(k): column k of A now holds
 | 
						|
*
 | 
						|
*              W(k) = L(k)*D(k),
 | 
						|
*
 | 
						|
*              where L(k) is the k-th column of L
 | 
						|
*
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
*
 | 
						|
*                 Perform a rank-1 update of A(k+1:n,k+1:n) and
 | 
						|
*                 store L(k) in column k
 | 
						|
*
 | 
						|
*                 Handle division by a small number
 | 
						|
*
 | 
						|
                  IF( ABS( REAL( A( K, K ) ) ).GE.SFMIN ) THEN
 | 
						|
*
 | 
						|
*                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | 
						|
*                    A := A - L(k)*D(k)*L(k)**T
 | 
						|
*                       = A - W(k)*(1/D(k))*W(k)**T
 | 
						|
*
 | 
						|
                     D11 = ONE / REAL( A( K, K ) )
 | 
						|
                     CALL CHER( UPLO, N-K, -D11, A( K+1, K ), 1,
 | 
						|
     $                          A( K+1, K+1 ), LDA )
 | 
						|
*
 | 
						|
*                    Store L(k) in column k
 | 
						|
*
 | 
						|
                     CALL CSSCAL( N-K, D11, A( K+1, K ), 1 )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Store L(k) in column k
 | 
						|
*
 | 
						|
                     D11 = REAL( A( K, K ) )
 | 
						|
                     DO 46 II = K + 1, N
 | 
						|
                        A( II, K ) = A( II, K ) / D11
 | 
						|
   46                CONTINUE
 | 
						|
*
 | 
						|
*                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | 
						|
*                    A := A - L(k)*D(k)*L(k)**T
 | 
						|
*                       = A - W(k)*(1/D(k))*W(k)**T
 | 
						|
*                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
 | 
						|
*
 | 
						|
                     CALL CHER( UPLO, N-K, -D11, A( K+1, K ), 1,
 | 
						|
     $                          A( K+1, K+1 ), LDA )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              2-by-2 pivot block D(k): columns k and k+1 now hold
 | 
						|
*
 | 
						|
*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | 
						|
*
 | 
						|
*              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | 
						|
*              of L
 | 
						|
*
 | 
						|
*
 | 
						|
*              Perform a rank-2 update of A(k+2:n,k+2:n) as
 | 
						|
*
 | 
						|
*              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
 | 
						|
*                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
 | 
						|
*
 | 
						|
*              and store L(k) and L(k+1) in columns k and k+1
 | 
						|
*
 | 
						|
               IF( K.LT.N-1 ) THEN
 | 
						|
*                 D = |A21|
 | 
						|
                  D = SLAPY2( REAL( A( K+1, K ) ),
 | 
						|
     $                AIMAG( A( K+1, K ) ) )
 | 
						|
                  D11 = REAL( A( K+1, K+1 ) ) / D
 | 
						|
                  D22 = REAL( A( K, K ) ) / D
 | 
						|
                  D21 = A( K+1, K ) / D
 | 
						|
                  TT = ONE / ( D11*D22-ONE )
 | 
						|
*
 | 
						|
                  DO 60 J = K + 2, N
 | 
						|
*
 | 
						|
*                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
 | 
						|
*
 | 
						|
                     WK = TT*( D11*A( J, K )-D21*A( J, K+1 ) )
 | 
						|
                     WKP1 = TT*( D22*A( J, K+1 )-CONJG( D21 )*
 | 
						|
     $                      A( J, K ) )
 | 
						|
*
 | 
						|
*                    Perform a rank-2 update of A(k+2:n,k+2:n)
 | 
						|
*
 | 
						|
                     DO 50 I = J, N
 | 
						|
                        A( I, J ) = A( I, J ) -
 | 
						|
     $                              ( A( I, K ) / D )*CONJG( WK ) -
 | 
						|
     $                              ( A( I, K+1 ) / D )*CONJG( WKP1 )
 | 
						|
   50                CONTINUE
 | 
						|
*
 | 
						|
*                    Store L(k) and L(k+1) in cols k and k+1 for row J
 | 
						|
*
 | 
						|
                     A( J, K ) = WK / D
 | 
						|
                     A( J, K+1 ) = WKP1 / D
 | 
						|
*                    (*) Make sure that diagonal element of pivot is real
 | 
						|
                     A( J, J ) = CMPLX( REAL( A( J, J ) ), ZERO )
 | 
						|
*
 | 
						|
   60             CONTINUE
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Store details of the interchanges in IPIV
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
            IPIV( K ) = KP
 | 
						|
         ELSE
 | 
						|
            IPIV( K ) = -P
 | 
						|
            IPIV( K+1 ) = -KP
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Increase K and return to the start of the main loop
 | 
						|
*
 | 
						|
         K = K + KSTEP
 | 
						|
         GO TO 40
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CHETF2_ROOK
 | 
						|
*
 | 
						|
      END
 |