298 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGBTRS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGBTRS + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbtrs.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbtrs.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbtrs.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
 | 
						|
*                          INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            AB( LDAB, * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGBTRS solves a system of linear equations
 | 
						|
*>    A * X = B,  A**T * X = B,  or  A**H * X = B
 | 
						|
*> with a general band matrix A using the LU factorization computed
 | 
						|
*> by CGBTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the form of the system of equations.
 | 
						|
*>          = 'N':  A * X = B     (No transpose)
 | 
						|
*>          = 'T':  A**T * X = B  (Transpose)
 | 
						|
*>          = 'C':  A**H * X = B  (Conjugate transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX array, dimension (LDAB,N)
 | 
						|
*>          Details of the LU factorization of the band matrix A, as
 | 
						|
*>          computed by CGBTRF.  U is stored as an upper triangular band
 | 
						|
*>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
 | 
						|
*>          the multipliers used during the factorization are stored in
 | 
						|
*>          rows KL+KU+2 to 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= N, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side matrix B.
 | 
						|
*>          On exit, the solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complexGBcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            AB( LDAB, * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE
 | 
						|
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LNOTI, NOTRAN
 | 
						|
      INTEGER            I, J, KD, L, LM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV, CGERU, CLACGV, CSWAP, CTBSV, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | 
						|
     $    LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KL.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KU.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDAB.LT.( 2*KL+KU+1 ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGBTRS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      KD = KU + KL + 1
 | 
						|
      LNOTI = KL.GT.0
 | 
						|
*
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
*
 | 
						|
*        Solve  A*X = B.
 | 
						|
*
 | 
						|
*        Solve L*X = B, overwriting B with X.
 | 
						|
*
 | 
						|
*        L is represented as a product of permutations and unit lower
 | 
						|
*        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
 | 
						|
*        where each transformation L(i) is a rank-one modification of
 | 
						|
*        the identity matrix.
 | 
						|
*
 | 
						|
         IF( LNOTI ) THEN
 | 
						|
            DO 10 J = 1, N - 1
 | 
						|
               LM = MIN( KL, N-J )
 | 
						|
               L = IPIV( J )
 | 
						|
               IF( L.NE.J )
 | 
						|
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
 | 
						|
               CALL CGERU( LM, NRHS, -ONE, AB( KD+1, J ), 1, B( J, 1 ),
 | 
						|
     $                     LDB, B( J+1, 1 ), LDB )
 | 
						|
   10       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         DO 20 I = 1, NRHS
 | 
						|
*
 | 
						|
*           Solve U*X = B, overwriting B with X.
 | 
						|
*
 | 
						|
            CALL CTBSV( 'Upper', 'No transpose', 'Non-unit', N, KL+KU,
 | 
						|
     $                  AB, LDAB, B( 1, I ), 1 )
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
 | 
						|
*
 | 
						|
*        Solve A**T * X = B.
 | 
						|
*
 | 
						|
         DO 30 I = 1, NRHS
 | 
						|
*
 | 
						|
*           Solve U**T * X = B, overwriting B with X.
 | 
						|
*
 | 
						|
            CALL CTBSV( 'Upper', 'Transpose', 'Non-unit', N, KL+KU, AB,
 | 
						|
     $                  LDAB, B( 1, I ), 1 )
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Solve L**T * X = B, overwriting B with X.
 | 
						|
*
 | 
						|
         IF( LNOTI ) THEN
 | 
						|
            DO 40 J = N - 1, 1, -1
 | 
						|
               LM = MIN( KL, N-J )
 | 
						|
               CALL CGEMV( 'Transpose', LM, NRHS, -ONE, B( J+1, 1 ),
 | 
						|
     $                     LDB, AB( KD+1, J ), 1, ONE, B( J, 1 ), LDB )
 | 
						|
               L = IPIV( J )
 | 
						|
               IF( L.NE.J )
 | 
						|
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve A**H * X = B.
 | 
						|
*
 | 
						|
         DO 50 I = 1, NRHS
 | 
						|
*
 | 
						|
*           Solve U**H * X = B, overwriting B with X.
 | 
						|
*
 | 
						|
            CALL CTBSV( 'Upper', 'Conjugate transpose', 'Non-unit', N,
 | 
						|
     $                  KL+KU, AB, LDAB, B( 1, I ), 1 )
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*        Solve L**H * X = B, overwriting B with X.
 | 
						|
*
 | 
						|
         IF( LNOTI ) THEN
 | 
						|
            DO 60 J = N - 1, 1, -1
 | 
						|
               LM = MIN( KL, N-J )
 | 
						|
               CALL CLACGV( NRHS, B( J, 1 ), LDB )
 | 
						|
               CALL CGEMV( 'Conjugate transpose', LM, NRHS, -ONE,
 | 
						|
     $                     B( J+1, 1 ), LDB, AB( KD+1, J ), 1, ONE,
 | 
						|
     $                     B( J, 1 ), LDB )
 | 
						|
               CALL CLACGV( NRHS, B( J, 1 ), LDB )
 | 
						|
               L = IPIV( J )
 | 
						|
               IF( L.NE.J )
 | 
						|
     $            CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGBTRS
 | 
						|
*
 | 
						|
      END
 |