265 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLATSP
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLATSP( UPLO, N, X, ISEED )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( * )
 | 
						|
*       COMPLEX*16         X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLATSP generates a special test matrix for the complex symmetric
 | 
						|
*> (indefinite) factorization for packed matrices.  The pivot blocks of
 | 
						|
*> the generated matrix will be in the following order:
 | 
						|
*>    2x2 pivot block, non diagonalizable
 | 
						|
*>    1x1 pivot block
 | 
						|
*>    2x2 pivot block, diagonalizable
 | 
						|
*>    (cycle repeats)
 | 
						|
*> A row interchange is required for each non-diagonalizable 2x2 block.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER
 | 
						|
*>          Specifies whether the generated matrix is to be upper or
 | 
						|
*>          lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The dimension of the matrix to be generated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>          The generated matrix in packed storage format.  The matrix
 | 
						|
*>          consists of 3x3 and 2x2 diagonal blocks which result in the
 | 
						|
*>          pivot sequence given above.  The matrix outside these
 | 
						|
*>          diagonal blocks is zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry, the seed for the random number generator.  The last
 | 
						|
*>          of the four integers must be odd.  (modified on exit)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLATSP( UPLO, N, X, ISEED )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( * )
 | 
						|
      COMPLEX*16         X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         EYE
 | 
						|
      PARAMETER          ( EYE = ( 0.0D0, 1.0D0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J, JJ, N5
 | 
						|
      DOUBLE PRECISION   ALPHA, ALPHA3, BETA
 | 
						|
      COMPLEX*16         A, B, C, R
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      COMPLEX*16         ZLARND
 | 
						|
      EXTERNAL           ZLARND
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize constants
 | 
						|
*
 | 
						|
      ALPHA = ( 1.D0+SQRT( 17.D0 ) ) / 8.D0
 | 
						|
      BETA = ALPHA - 1.D0 / 1000.D0
 | 
						|
      ALPHA3 = ALPHA*ALPHA*ALPHA
 | 
						|
*
 | 
						|
*     Fill the matrix with zeros.
 | 
						|
*
 | 
						|
      DO 10 J = 1, N*( N+1 ) / 2
 | 
						|
         X( J ) = 0.0D0
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
*     UPLO = 'U':  Upper triangular storage
 | 
						|
*
 | 
						|
      IF( UPLO.EQ.'U' ) THEN
 | 
						|
         N5 = N / 5
 | 
						|
         N5 = N - 5*N5 + 1
 | 
						|
*
 | 
						|
         JJ = N*( N+1 ) / 2
 | 
						|
         DO 20 J = N, N5, -5
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( JJ ) = A
 | 
						|
            X( JJ-2 ) = B
 | 
						|
            JJ = JJ - J
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            X( JJ-1 ) = R
 | 
						|
            JJ = JJ - ( J-1 )
 | 
						|
            X( JJ ) = C
 | 
						|
            JJ = JJ - ( J-2 )
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            JJ = JJ - ( J-3 )
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( JJ+( J-3 ) ) ).GT.ABS( X( JJ ) ) ) THEN
 | 
						|
               X( JJ+( J-4 ) ) = 2.0D0*X( JJ+( J-3 ) )
 | 
						|
            ELSE
 | 
						|
               X( JJ+( J-4 ) ) = 2.0D0*X( JJ )
 | 
						|
            END IF
 | 
						|
            JJ = JJ - ( J-4 )
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Clean-up for N not a multiple of 5.
 | 
						|
*
 | 
						|
         J = N5 - 1
 | 
						|
         IF( J.GT.2 ) THEN
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( JJ ) = A
 | 
						|
            X( JJ-2 ) = B
 | 
						|
            JJ = JJ - J
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            X( JJ-1 ) = R
 | 
						|
            JJ = JJ - ( J-1 )
 | 
						|
            X( JJ ) = C
 | 
						|
            JJ = JJ - ( J-2 )
 | 
						|
            J = J - 3
 | 
						|
         END IF
 | 
						|
         IF( J.GT.1 ) THEN
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            X( JJ-J ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( JJ ) ).GT.ABS( X( JJ-J ) ) ) THEN
 | 
						|
               X( JJ-1 ) = 2.0D0*X( JJ )
 | 
						|
            ELSE
 | 
						|
               X( JJ-1 ) = 2.0D0*X( JJ-J )
 | 
						|
            END IF
 | 
						|
            JJ = JJ - J - ( J-1 )
 | 
						|
            J = J - 2
 | 
						|
         ELSE IF( J.EQ.1 ) THEN
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            J = J - 1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*     UPLO = 'L':  Lower triangular storage
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
         N5 = N / 5
 | 
						|
         N5 = N5*5
 | 
						|
*
 | 
						|
         JJ = 1
 | 
						|
         DO 30 J = 1, N5, 5
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( JJ ) = A
 | 
						|
            X( JJ+2 ) = B
 | 
						|
            JJ = JJ + ( N-J+1 )
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            X( JJ+1 ) = R
 | 
						|
            JJ = JJ + ( N-J )
 | 
						|
            X( JJ ) = C
 | 
						|
            JJ = JJ + ( N-J-1 )
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            JJ = JJ + ( N-J-2 )
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( JJ-( N-J-2 ) ) ).GT.ABS( X( JJ ) ) ) THEN
 | 
						|
               X( JJ-( N-J-2 )+1 ) = 2.0D0*X( JJ-( N-J-2 ) )
 | 
						|
            ELSE
 | 
						|
               X( JJ-( N-J-2 )+1 ) = 2.0D0*X( JJ )
 | 
						|
            END IF
 | 
						|
            JJ = JJ + ( N-J-3 )
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Clean-up for N not a multiple of 5.
 | 
						|
*
 | 
						|
         J = N5 + 1
 | 
						|
         IF( J.LT.N-1 ) THEN
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( JJ ) = A
 | 
						|
            X( JJ+2 ) = B
 | 
						|
            JJ = JJ + ( N-J+1 )
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            X( JJ+1 ) = R
 | 
						|
            JJ = JJ + ( N-J )
 | 
						|
            X( JJ ) = C
 | 
						|
            JJ = JJ + ( N-J-1 )
 | 
						|
            J = J + 3
 | 
						|
         END IF
 | 
						|
         IF( J.LT.N ) THEN
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            X( JJ+( N-J+1 ) ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( JJ ) ).GT.ABS( X( JJ+( N-J+1 ) ) ) ) THEN
 | 
						|
               X( JJ+1 ) = 2.0D0*X( JJ )
 | 
						|
            ELSE
 | 
						|
               X( JJ+1 ) = 2.0D0*X( JJ+( N-J+1 ) )
 | 
						|
            END IF
 | 
						|
            JJ = JJ + ( N-J+1 ) + ( N-J )
 | 
						|
            J = J + 2
 | 
						|
         ELSE IF( J.EQ.N ) THEN
 | 
						|
            X( JJ ) = ZLARND( 2, ISEED )
 | 
						|
            JJ = JJ + ( N-J+1 )
 | 
						|
            J = J + 1
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLATSP
 | 
						|
*
 | 
						|
      END
 |