515 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			515 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b STFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download STFTTP + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stfttp.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stfttp.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stfttp.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE STFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANSR, UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               AP( 0: * ), ARF( 0: * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> STFTTP copies a triangular matrix A from rectangular full packed
 | 
						|
*> format (TF) to standard packed format (TP).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANSR
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSR is CHARACTER*1
 | 
						|
*>          = 'N':  ARF is in Normal format;
 | 
						|
*>          = 'T':  ARF is in Transpose format;
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  A is upper triangular;
 | 
						|
*>          = 'L':  A is lower triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ARF
 | 
						|
*> \verbatim
 | 
						|
*>          ARF is REAL array, dimension ( N*(N+1)/2 ),
 | 
						|
*>          On entry, the upper or lower triangular matrix A stored in
 | 
						|
*>          RFP format. For a further discussion see Notes below.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is REAL array, dimension ( N*(N+1)/2 ),
 | 
						|
*>          On exit, the upper or lower triangular matrix A, packed
 | 
						|
*>          columnwise in a linear array. The j-th column of A is stored
 | 
						|
*>          in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  We first consider Rectangular Full Packed (RFP) Format when N is
 | 
						|
*>  even. We give an example where N = 6.
 | 
						|
*>
 | 
						|
*>      AP is Upper             AP is Lower
 | 
						|
*>
 | 
						|
*>   00 01 02 03 04 05       00
 | 
						|
*>      11 12 13 14 15       10 11
 | 
						|
*>         22 23 24 25       20 21 22
 | 
						|
*>            33 34 35       30 31 32 33
 | 
						|
*>               44 45       40 41 42 43 44
 | 
						|
*>                  55       50 51 52 53 54 55
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  Let TRANSR = 'N'. RFP holds AP as follows:
 | 
						|
*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | 
						|
*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | 
						|
*>  the transpose of the first three columns of AP upper.
 | 
						|
*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | 
						|
*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | 
						|
*>  the transpose of the last three columns of AP lower.
 | 
						|
*>  This covers the case N even and TRANSR = 'N'.
 | 
						|
*>
 | 
						|
*>         RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>        03 04 05                33 43 53
 | 
						|
*>        13 14 15                00 44 54
 | 
						|
*>        23 24 25                10 11 55
 | 
						|
*>        33 34 35                20 21 22
 | 
						|
*>        00 44 45                30 31 32
 | 
						|
*>        01 11 55                40 41 42
 | 
						|
*>        02 12 22                50 51 52
 | 
						|
*>
 | 
						|
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | 
						|
*>  transpose of RFP A above. One therefore gets:
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>           RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | 
						|
*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | 
						|
*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  We then consider Rectangular Full Packed (RFP) Format when N is
 | 
						|
*>  odd. We give an example where N = 5.
 | 
						|
*>
 | 
						|
*>     AP is Upper                 AP is Lower
 | 
						|
*>
 | 
						|
*>   00 01 02 03 04              00
 | 
						|
*>      11 12 13 14              10 11
 | 
						|
*>         22 23 24              20 21 22
 | 
						|
*>            33 34              30 31 32 33
 | 
						|
*>               44              40 41 42 43 44
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  Let TRANSR = 'N'. RFP holds AP as follows:
 | 
						|
*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | 
						|
*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | 
						|
*>  the transpose of the first two columns of AP upper.
 | 
						|
*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | 
						|
*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | 
						|
*>  the transpose of the last two columns of AP lower.
 | 
						|
*>  This covers the case N odd and TRANSR = 'N'.
 | 
						|
*>
 | 
						|
*>         RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>        02 03 04                00 33 43
 | 
						|
*>        12 13 14                10 11 44
 | 
						|
*>        22 23 24                20 21 22
 | 
						|
*>        00 33 34                30 31 32
 | 
						|
*>        01 11 44                40 41 42
 | 
						|
*>
 | 
						|
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | 
						|
*>  transpose of RFP A above. One therefore gets:
 | 
						|
*>
 | 
						|
*>           RFP A                   RFP A
 | 
						|
*>
 | 
						|
*>     02 12 22 00 01             00 10 20 30 40 50
 | 
						|
*>     03 13 23 33 11             33 11 21 31 41 51
 | 
						|
*>     04 14 24 34 44             43 44 22 32 42 52
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE STFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANSR, UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               AP( 0: * ), ARF( 0: * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER, NISODD, NORMALTRANSR
 | 
						|
      INTEGER            N1, N2, K, NT
 | 
						|
      INTEGER            I, J, IJ
 | 
						|
      INTEGER            IJP, JP, LDA, JS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NORMALTRANSR = LSAME( TRANSR, 'N' )
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'STFTTP', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( NORMALTRANSR ) THEN
 | 
						|
            AP( 0 ) = ARF( 0 )
 | 
						|
         ELSE
 | 
						|
            AP( 0 ) = ARF( 0 )
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Size of array ARF(0:NT-1)
 | 
						|
*
 | 
						|
      NT = N*( N+1 ) / 2
 | 
						|
*
 | 
						|
*     Set N1 and N2 depending on LOWER
 | 
						|
*
 | 
						|
      IF( LOWER ) THEN
 | 
						|
         N2 = N / 2
 | 
						|
         N1 = N - N2
 | 
						|
      ELSE
 | 
						|
         N1 = N / 2
 | 
						|
         N2 = N - N1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If N is odd, set NISODD = .TRUE.
 | 
						|
*     If N is even, set K = N/2 and NISODD = .FALSE.
 | 
						|
*
 | 
						|
*     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
 | 
						|
*     where noe = 0 if n is even, noe = 1 if n is odd
 | 
						|
*
 | 
						|
      IF( MOD( N, 2 ).EQ.0 ) THEN
 | 
						|
         K = N / 2
 | 
						|
         NISODD = .FALSE.
 | 
						|
         LDA = N + 1
 | 
						|
      ELSE
 | 
						|
         NISODD = .TRUE.
 | 
						|
         LDA = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     ARF^C has lda rows and n+1-noe cols
 | 
						|
*
 | 
						|
      IF( .NOT.NORMALTRANSR )
 | 
						|
     $   LDA = ( N+1 ) / 2
 | 
						|
*
 | 
						|
*     start execution: there are eight cases
 | 
						|
*
 | 
						|
      IF( NISODD ) THEN
 | 
						|
*
 | 
						|
*        N is odd
 | 
						|
*
 | 
						|
         IF( NORMALTRANSR ) THEN
 | 
						|
*
 | 
						|
*           N is odd and TRANSR = 'N'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
 | 
						|
*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
 | 
						|
*             T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               JP = 0
 | 
						|
               DO J = 0, N2
 | 
						|
                  DO I = J, N - 1
 | 
						|
                     IJ = I + JP
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JP = JP + LDA
 | 
						|
               END DO
 | 
						|
               DO I = 0, N2 - 1
 | 
						|
                  DO J = 1 + I, N2
 | 
						|
                     IJ = I + J*LDA
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
 | 
						|
*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
 | 
						|
*             T1 -> a(n2), T2 -> a(n1), S -> a(0)
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               DO J = 0, N1 - 1
 | 
						|
                  IJ = N2 + J
 | 
						|
                  DO I = 0, J
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                     IJ = IJ + LDA
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
               JS = 0
 | 
						|
               DO J = N1, N - 1
 | 
						|
                  IJ = JS
 | 
						|
                  DO IJ = JS, JS + J
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JS = JS + LDA
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           N is odd and TRANSR = 'T'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              SRPA for LOWER, TRANSPOSE and N is odd
 | 
						|
*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
 | 
						|
*              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               DO I = 0, N2
 | 
						|
                  DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
               JS = 1
 | 
						|
               DO J = 0, N2 - 1
 | 
						|
                  DO IJ = JS, JS + N2 - J - 1
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JS = JS + LDA + 1
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              SRPA for UPPER, TRANSPOSE and N is odd
 | 
						|
*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
 | 
						|
*              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               JS = N2*LDA
 | 
						|
               DO J = 0, N1 - 1
 | 
						|
                  DO IJ = JS, JS + J
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JS = JS + LDA
 | 
						|
               END DO
 | 
						|
               DO I = 0, N1
 | 
						|
                  DO IJ = I, I + ( N1+I )*LDA, LDA
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        N is even
 | 
						|
*
 | 
						|
         IF( NORMALTRANSR ) THEN
 | 
						|
*
 | 
						|
*           N is even and TRANSR = 'N'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
 | 
						|
*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
 | 
						|
*              T1 -> a(1), T2 -> a(0), S -> a(k+1)
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               JP = 0
 | 
						|
               DO J = 0, K - 1
 | 
						|
                  DO I = J, N - 1
 | 
						|
                     IJ = 1 + I + JP
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JP = JP + LDA
 | 
						|
               END DO
 | 
						|
               DO I = 0, K - 1
 | 
						|
                  DO J = I, K - 1
 | 
						|
                     IJ = I + J*LDA
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
 | 
						|
*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
 | 
						|
*              T1 -> a(k+1), T2 -> a(k), S -> a(0)
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               DO J = 0, K - 1
 | 
						|
                  IJ = K + 1 + J
 | 
						|
                  DO I = 0, J
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                     IJ = IJ + LDA
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
               JS = 0
 | 
						|
               DO J = K, N - 1
 | 
						|
                  IJ = JS
 | 
						|
                  DO IJ = JS, JS + J
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JS = JS + LDA
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           N is even and TRANSR = 'T'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              SRPA for LOWER, TRANSPOSE and N is even (see paper)
 | 
						|
*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
 | 
						|
*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               DO I = 0, K - 1
 | 
						|
                  DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
               JS = 0
 | 
						|
               DO J = 0, K - 1
 | 
						|
                  DO IJ = JS, JS + K - J - 1
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JS = JS + LDA + 1
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              SRPA for UPPER, TRANSPOSE and N is even (see paper)
 | 
						|
*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
 | 
						|
*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
 | 
						|
*
 | 
						|
               IJP = 0
 | 
						|
               JS = ( K+1 )*LDA
 | 
						|
               DO J = 0, K - 1
 | 
						|
                  DO IJ = JS, JS + J
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
                  JS = JS + LDA
 | 
						|
               END DO
 | 
						|
               DO I = 0, K - 1
 | 
						|
                  DO IJ = I, I + ( K+I )*LDA, LDA
 | 
						|
                     AP( IJP ) = ARF( IJ )
 | 
						|
                     IJP = IJP + 1
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STFTTP
 | 
						|
*
 | 
						|
      END
 |