369 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSYTRS_3
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSYTRS_3 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrs_3.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrs_3.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrs_3.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
 | 
						|
*                            INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * ), E( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> SSYTRS_3 solves a system of linear equations A * X = B with a real
 | 
						|
*> symmetric matrix A using the factorization computed
 | 
						|
*> by SSYTRF_RK or SSYTRF_BK:
 | 
						|
*>
 | 
						|
*>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
 | 
						|
*>
 | 
						|
*> where U (or L) is unit upper (or lower) triangular matrix,
 | 
						|
*> U**T (or L**T) is the transpose of U (or L), P is a permutation
 | 
						|
*> matrix, P**T is the transpose of P, and D is symmetric and block
 | 
						|
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 | 
						|
*>
 | 
						|
*> This algorithm is using Level 3 BLAS.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the details of the factorization are
 | 
						|
*>          stored as an upper or lower triangular matrix:
 | 
						|
*>          = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
 | 
						|
*>          = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          Diagonal of the block diagonal matrix D and factors U or L
 | 
						|
*>          as computed by SSYTRF_RK and SSYTRF_BK:
 | 
						|
*>            a) ONLY diagonal elements of the symmetric block diagonal
 | 
						|
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | 
						|
*>               (superdiagonal (or subdiagonal) elements of D
 | 
						|
*>                should be provided on entry in array E), and
 | 
						|
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | 
						|
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (N)
 | 
						|
*>          On entry, contains the superdiagonal (or subdiagonal)
 | 
						|
*>          elements of the symmetric block diagonal matrix D
 | 
						|
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | 
						|
*>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
 | 
						|
*>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
 | 
						|
*>
 | 
						|
*>          NOTE: For 1-by-1 diagonal block D(k), where
 | 
						|
*>          1 <= k <= N, the element E(k) is not referenced in both
 | 
						|
*>          UPLO = 'U' or UPLO = 'L' cases.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges and the block structure of D
 | 
						|
*>          as determined by SSYTRF_RK or SSYTRF_BK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the right hand side matrix B.
 | 
						|
*>          On exit, the solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup singleSYcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  June 2017,  Igor Kozachenko,
 | 
						|
*>                  Computer Science Division,
 | 
						|
*>                  University of California, Berkeley
 | 
						|
*>
 | 
						|
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | 
						|
*>                  School of Mathematics,
 | 
						|
*>                  University of Manchester
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  ====================================================================
 | 
						|
      SUBROUTINE SSYTRS_3( UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB,
 | 
						|
     $                     INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, J, K, KP
 | 
						|
      REAL               AK, AKM1, AKM1K, BK, BKM1, DENOM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SSCAL, SSWAP, STRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSYTRS_3', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Begin Upper
 | 
						|
*
 | 
						|
*        Solve A*X = B, where A = U*D*U**T.
 | 
						|
*
 | 
						|
*        P**T * B
 | 
						|
*
 | 
						|
*        Interchange rows K and IPIV(K) of matrix B in the same order
 | 
						|
*        that the formation order of IPIV(I) vector for Upper case.
 | 
						|
*
 | 
						|
*        (We can do the simple loop over IPIV with decrement -1,
 | 
						|
*        since the ABS value of IPIV(I) represents the row index
 | 
						|
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
 | 
						|
*
 | 
						|
         DO K = N, 1, -1
 | 
						|
            KP = ABS( IPIV( K ) )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
 | 
						|
*
 | 
						|
         CALL STRSM( 'L', 'U', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
 | 
						|
*
 | 
						|
*        Compute D \ B -> B   [ D \ (U \P**T * B) ]
 | 
						|
*
 | 
						|
         I = N
 | 
						|
         DO WHILE ( I.GE.1 )
 | 
						|
            IF( IPIV( I ).GT.0 ) THEN
 | 
						|
               CALL SSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
 | 
						|
            ELSE IF ( I.GT.1 ) THEN
 | 
						|
               AKM1K = E( I )
 | 
						|
               AKM1 = A( I-1, I-1 ) / AKM1K
 | 
						|
               AK = A( I, I ) / AKM1K
 | 
						|
               DENOM = AKM1*AK - ONE
 | 
						|
               DO J = 1, NRHS
 | 
						|
                  BKM1 = B( I-1, J ) / AKM1K
 | 
						|
                  BK = B( I, J ) / AKM1K
 | 
						|
                  B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
 | 
						|
                  B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | 
						|
               END DO
 | 
						|
               I = I - 1
 | 
						|
            END IF
 | 
						|
            I = I - 1
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        Compute (U**T \ B) -> B   [ U**T \ (D \ (U \P**T * B) ) ]
 | 
						|
*
 | 
						|
         CALL STRSM( 'L', 'U', 'T', 'U', N, NRHS, ONE, A, LDA, B, LDB )
 | 
						|
*
 | 
						|
*        P * B  [ P * (U**T \ (D \ (U \P**T * B) )) ]
 | 
						|
*
 | 
						|
*        Interchange rows K and IPIV(K) of matrix B in reverse order
 | 
						|
*        from the formation order of IPIV(I) vector for Upper case.
 | 
						|
*
 | 
						|
*        (We can do the simple loop over IPIV with increment 1,
 | 
						|
*        since the ABS value of IPIV(I) represents the row index
 | 
						|
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
 | 
						|
*
 | 
						|
         DO K = 1, N, 1
 | 
						|
            KP = ABS( IPIV( K ) )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Begin Lower
 | 
						|
*
 | 
						|
*        Solve A*X = B, where A = L*D*L**T.
 | 
						|
*
 | 
						|
*        P**T * B
 | 
						|
*        Interchange rows K and IPIV(K) of matrix B in the same order
 | 
						|
*        that the formation order of IPIV(I) vector for Lower case.
 | 
						|
*
 | 
						|
*        (We can do the simple loop over IPIV with increment 1,
 | 
						|
*        since the ABS value of IPIV(I) represents the row index
 | 
						|
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
 | 
						|
*
 | 
						|
         DO K = 1, N, 1
 | 
						|
            KP = ABS( IPIV( K ) )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
 | 
						|
*
 | 
						|
         CALL STRSM( 'L', 'L', 'N', 'U', N, NRHS, ONE, A, LDA, B, LDB )
 | 
						|
*
 | 
						|
*        Compute D \ B -> B   [ D \ (L \P**T * B) ]
 | 
						|
*
 | 
						|
         I = 1
 | 
						|
         DO WHILE ( I.LE.N )
 | 
						|
            IF( IPIV( I ).GT.0 ) THEN
 | 
						|
               CALL SSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
 | 
						|
            ELSE IF( I.LT.N ) THEN
 | 
						|
               AKM1K = E( I )
 | 
						|
               AKM1 = A( I, I ) / AKM1K
 | 
						|
               AK = A( I+1, I+1 ) / AKM1K
 | 
						|
               DENOM = AKM1*AK - ONE
 | 
						|
               DO  J = 1, NRHS
 | 
						|
                  BKM1 = B( I, J ) / AKM1K
 | 
						|
                  BK = B( I+1, J ) / AKM1K
 | 
						|
                  B( I, J ) = ( AK*BKM1-BK ) / DENOM
 | 
						|
                  B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | 
						|
               END DO
 | 
						|
               I = I + 1
 | 
						|
            END IF
 | 
						|
            I = I + 1
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        Compute (L**T \ B) -> B   [ L**T \ (D \ (L \P**T * B) ) ]
 | 
						|
*
 | 
						|
         CALL STRSM('L', 'L', 'T', 'U', N, NRHS, ONE, A, LDA, B, LDB )
 | 
						|
*
 | 
						|
*        P * B  [ P * (L**T \ (D \ (L \P**T * B) )) ]
 | 
						|
*
 | 
						|
*        Interchange rows K and IPIV(K) of matrix B in reverse order
 | 
						|
*        from the formation order of IPIV(I) vector for Lower case.
 | 
						|
*
 | 
						|
*        (We can do the simple loop over IPIV with decrement -1,
 | 
						|
*        since the ABS value of IPIV(I) represents the row index
 | 
						|
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
 | 
						|
*
 | 
						|
         DO K = N, 1, -1
 | 
						|
            KP = ABS( IPIV( K ) )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        END Lower
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSYTRS_3
 | 
						|
*
 | 
						|
      END
 |