339 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DCHKQP
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DCHKQP( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A,
 | 
						|
*                          COPYA, S, TAU, WORK, IWORK, NOUT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            TSTERR
 | 
						|
*       INTEGER            NM, NN, NOUT
 | 
						|
*       DOUBLE PRECISION   THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            IWORK( * ), MVAL( * ), NVAL( * )
 | 
						|
*       DOUBLE PRECISION   A( * ), COPYA( * ), S( * ),
 | 
						|
*      $                   TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DCHKQP tests DGEQPF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          The matrix types to be used for testing.  Matrices of type j
 | 
						|
*>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | 
						|
*>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NM
 | 
						|
*> \verbatim
 | 
						|
*>          NM is INTEGER
 | 
						|
*>          The number of values of M contained in the vector MVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MVAL
 | 
						|
*> \verbatim
 | 
						|
*>          MVAL is INTEGER array, dimension (NM)
 | 
						|
*>          The values of the matrix row dimension M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NN
 | 
						|
*> \verbatim
 | 
						|
*>          NN is INTEGER
 | 
						|
*>          The number of values of N contained in the vector NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NN)
 | 
						|
*>          The values of the matrix column dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is DOUBLE PRECISION
 | 
						|
*>          The threshold value for the test ratios.  A result is
 | 
						|
*>          included in the output file if RESULT >= THRESH.  To have
 | 
						|
*>          every test ratio printed, use THRESH = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TSTERR
 | 
						|
*> \verbatim
 | 
						|
*>          TSTERR is LOGICAL
 | 
						|
*>          Flag that indicates whether error exits are to be tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (MMAX*NMAX)
 | 
						|
*>          where MMAX is the maximum value of M in MVAL and NMAX is the
 | 
						|
*>          maximum value of N in NVAL.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] COPYA
 | 
						|
*> \verbatim
 | 
						|
*>          COPYA is DOUBLE PRECISION array, dimension (MMAX*NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (min(MMAX,NMAX))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is DOUBLE PRECISION array, dimension (MMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension
 | 
						|
*>                      (MMAX*NMAX + 4*NMAX + MMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (NMAX)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUT is INTEGER
 | 
						|
*>          The unit number for output.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DCHKQP( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A,
 | 
						|
     $                   COPYA, S, TAU, WORK, IWORK, NOUT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            TSTERR
 | 
						|
      INTEGER            NM, NN, NOUT
 | 
						|
      DOUBLE PRECISION   THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            IWORK( * ), MVAL( * ), NVAL( * )
 | 
						|
      DOUBLE PRECISION   A( * ), COPYA( * ), S( * ),
 | 
						|
     $                   TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            NTYPES
 | 
						|
      PARAMETER          ( NTYPES = 6 )
 | 
						|
      INTEGER            NTESTS
 | 
						|
      PARAMETER          ( NTESTS = 3 )
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER*3        PATH
 | 
						|
      INTEGER            I, IHIGH, ILOW, IM, IMODE, IN, INFO, ISTEP, K,
 | 
						|
     $                   LDA, LWORK, M, MNMIN, MODE, N, NERRS, NFAIL,
 | 
						|
     $                   NRUN
 | 
						|
      DOUBLE PRECISION   EPS
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | 
						|
      DOUBLE PRECISION   RESULT( NTESTS )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DQPT01, DQRT11, DQRT12
 | 
						|
      EXTERNAL           DLAMCH, DQPT01, DQRT11, DQRT12
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ALAHD, ALASUM, DERRQP, DGEQPF, DLACPY, DLAORD,
 | 
						|
     $                   DLASET, DLATMS
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Scalars in Common ..
 | 
						|
      LOGICAL            LERR, OK
 | 
						|
      CHARACTER*32       SRNAMT
 | 
						|
      INTEGER            INFOT, IOUNIT
 | 
						|
*     ..
 | 
						|
*     .. Common blocks ..
 | 
						|
      COMMON             / INFOC / INFOT, IOUNIT, OK, LERR
 | 
						|
      COMMON             / SRNAMC / SRNAMT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               ISEEDY / 1988, 1989, 1990, 1991 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize constants and the random number seed.
 | 
						|
*
 | 
						|
      PATH( 1: 1 ) = 'Double precision'
 | 
						|
      PATH( 2: 3 ) = 'QP'
 | 
						|
      NRUN = 0
 | 
						|
      NFAIL = 0
 | 
						|
      NERRS = 0
 | 
						|
      DO 10 I = 1, 4
 | 
						|
         ISEED( I ) = ISEEDY( I )
 | 
						|
   10 CONTINUE
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Test the error exits
 | 
						|
*
 | 
						|
      IF( TSTERR )
 | 
						|
     $   CALL DERRQP( PATH, NOUT )
 | 
						|
      INFOT = 0
 | 
						|
*
 | 
						|
      DO 80 IM = 1, NM
 | 
						|
*
 | 
						|
*        Do for each value of M in MVAL.
 | 
						|
*
 | 
						|
         M = MVAL( IM )
 | 
						|
         LDA = MAX( 1, M )
 | 
						|
*
 | 
						|
         DO 70 IN = 1, NN
 | 
						|
*
 | 
						|
*           Do for each value of N in NVAL.
 | 
						|
*
 | 
						|
            N = NVAL( IN )
 | 
						|
            MNMIN = MIN( M, N )
 | 
						|
            LWORK = MAX( 1, M*MAX( M, N ) + 4*MNMIN + MAX( M, N ),
 | 
						|
     $                   M*N + 2*MNMIN + 4*N )
 | 
						|
*
 | 
						|
            DO 60 IMODE = 1, NTYPES
 | 
						|
               IF( .NOT.DOTYPE( IMODE ) )
 | 
						|
     $            GO TO 60
 | 
						|
*
 | 
						|
*              Do for each type of matrix
 | 
						|
*                 1:  zero matrix
 | 
						|
*                 2:  one small singular value
 | 
						|
*                 3:  geometric distribution of singular values
 | 
						|
*                 4:  first n/2 columns fixed
 | 
						|
*                 5:  last n/2 columns fixed
 | 
						|
*                 6:  every second column fixed
 | 
						|
*
 | 
						|
               MODE = IMODE
 | 
						|
               IF( IMODE.GT.3 )
 | 
						|
     $            MODE = 1
 | 
						|
*
 | 
						|
*              Generate test matrix of size m by n using
 | 
						|
*              singular value distribution indicated by `mode'.
 | 
						|
*
 | 
						|
               DO 20 I = 1, N
 | 
						|
                  IWORK( I ) = 0
 | 
						|
   20          CONTINUE
 | 
						|
               IF( IMODE.EQ.1 ) THEN
 | 
						|
                  CALL DLASET( 'Full', M, N, ZERO, ZERO, COPYA, LDA )
 | 
						|
                  DO 30 I = 1, MNMIN
 | 
						|
                     S( I ) = ZERO
 | 
						|
   30             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', S,
 | 
						|
     $                         MODE, ONE / EPS, ONE, M, N, 'No packing',
 | 
						|
     $                         COPYA, LDA, WORK, INFO )
 | 
						|
                  IF( IMODE.GE.4 ) THEN
 | 
						|
                     IF( IMODE.EQ.4 ) THEN
 | 
						|
                        ILOW = 1
 | 
						|
                        ISTEP = 1
 | 
						|
                        IHIGH = MAX( 1, N / 2 )
 | 
						|
                     ELSE IF( IMODE.EQ.5 ) THEN
 | 
						|
                        ILOW = MAX( 1, N / 2 )
 | 
						|
                        ISTEP = 1
 | 
						|
                        IHIGH = N
 | 
						|
                     ELSE IF( IMODE.EQ.6 ) THEN
 | 
						|
                        ILOW = 1
 | 
						|
                        ISTEP = 2
 | 
						|
                        IHIGH = N
 | 
						|
                     END IF
 | 
						|
                     DO 40 I = ILOW, IHIGH, ISTEP
 | 
						|
                        IWORK( I ) = 1
 | 
						|
   40                CONTINUE
 | 
						|
                  END IF
 | 
						|
                  CALL DLAORD( 'Decreasing', MNMIN, S, 1 )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Save A and its singular values
 | 
						|
*
 | 
						|
               CALL DLACPY( 'All', M, N, COPYA, LDA, A, LDA )
 | 
						|
*
 | 
						|
*              Compute the QR factorization with pivoting of A
 | 
						|
*
 | 
						|
               SRNAMT = 'DGEQPF'
 | 
						|
               CALL DGEQPF( M, N, A, LDA, IWORK, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*              Compute norm(svd(a) - svd(r))
 | 
						|
*
 | 
						|
               RESULT( 1 ) = DQRT12( M, N, A, LDA, S, WORK, LWORK )
 | 
						|
*
 | 
						|
*              Compute norm( A*P - Q*R )
 | 
						|
*
 | 
						|
               RESULT( 2 ) = DQPT01( M, N, MNMIN, COPYA, A, LDA, TAU,
 | 
						|
     $                       IWORK, WORK, LWORK )
 | 
						|
*
 | 
						|
*              Compute Q'*Q
 | 
						|
*
 | 
						|
               RESULT( 3 ) = DQRT11( M, MNMIN, A, LDA, TAU, WORK,
 | 
						|
     $                       LWORK )
 | 
						|
*
 | 
						|
*              Print information about the tests that did not pass
 | 
						|
*              the threshold.
 | 
						|
*
 | 
						|
               DO 50 K = 1, 3
 | 
						|
                  IF( RESULT( K ).GE.THRESH ) THEN
 | 
						|
                     IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | 
						|
     $                  CALL ALAHD( NOUT, PATH )
 | 
						|
                     WRITE( NOUT, FMT = 9999 )M, N, IMODE, K,
 | 
						|
     $                  RESULT( K )
 | 
						|
                     NFAIL = NFAIL + 1
 | 
						|
                  END IF
 | 
						|
   50          CONTINUE
 | 
						|
               NRUN = NRUN + 3
 | 
						|
   60       CONTINUE
 | 
						|
   70    CONTINUE
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
*     Print a summary of the results.
 | 
						|
*
 | 
						|
      CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | 
						|
*
 | 
						|
 9999 FORMAT( ' M =', I5, ', N =', I5, ', type ', I2, ', test ', I2,
 | 
						|
     $      ', ratio =', G12.5 )
 | 
						|
*
 | 
						|
*     End of DCHKQP
 | 
						|
*
 | 
						|
      END
 |