243 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSGT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
 | |
| *                          WORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            ITYPE, LDA, LDB, LDZ, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), D( * ), RESULT( * ),
 | |
| *      $                   WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSGT01 checks a decomposition of the form
 | |
| *>
 | |
| *>    A Z   =  B Z D or
 | |
| *>    A B Z =  Z D or
 | |
| *>    B A Z =  Z D
 | |
| *>
 | |
| *> where A is a symmetric matrix, B is
 | |
| *> symmetric positive definite, Z is orthogonal, and D is diagonal.
 | |
| *>
 | |
| *> One of the following test ratios is computed:
 | |
| *>
 | |
| *> ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
 | |
| *>
 | |
| *> ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
 | |
| *>
 | |
| *> ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          The form of the symmetric generalized eigenproblem.
 | |
| *>          = 1:  A*z = (lambda)*B*z
 | |
| *>          = 2:  A*B*z = (lambda)*z
 | |
| *>          = 3:  B*A*z = (lambda)*z
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrices A and B is stored.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of eigenvalues found.  0 <= M <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          The original symmetric matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB, N)
 | |
| *>          The original symmetric positive definite matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, M)
 | |
| *>          The computed eigenvectors of the generalized eigenproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (M)
 | |
| *>          The computed eigenvalues of the generalized eigenproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (1)
 | |
| *>          The test ratio as described above.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
 | |
|      $                   WORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            ITYPE, LDA, LDB, LDZ, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * ), D( * ), RESULT( * ),
 | |
|      $                   WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I
 | |
|       REAL               ANORM, ULP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE, SLANSY
 | |
|       EXTERNAL           SLAMCH, SLANGE, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SSCAL, SSYMM
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       ULP = SLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Compute product of 1-norms of A and Z.
 | |
| *
 | |
|       ANORM = SLANSY( '1', UPLO, N, A, LDA, WORK )*
 | |
|      $        SLANGE( '1', N, M, Z, LDZ, WORK )
 | |
|       IF( ANORM.EQ.ZERO )
 | |
|      $   ANORM = ONE
 | |
| *
 | |
|       IF( ITYPE.EQ.1 ) THEN
 | |
| *
 | |
| *        Norm of AZ - BZD
 | |
| *
 | |
|          CALL SSYMM( 'Left', UPLO, N, M, ONE, A, LDA, Z, LDZ, ZERO,
 | |
|      $               WORK, N )
 | |
|          DO 10 I = 1, M
 | |
|             CALL SSCAL( N, D( I ), Z( 1, I ), 1 )
 | |
|    10    CONTINUE
 | |
|          CALL SSYMM( 'Left', UPLO, N, M, ONE, B, LDB, Z, LDZ, -ONE,
 | |
|      $               WORK, N )
 | |
| *
 | |
|          RESULT( 1 ) = ( SLANGE( '1', N, M, WORK, N, WORK ) / ANORM ) /
 | |
|      $                 ( N*ULP )
 | |
| *
 | |
|       ELSE IF( ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *        Norm of ABZ - ZD
 | |
| *
 | |
|          CALL SSYMM( 'Left', UPLO, N, M, ONE, B, LDB, Z, LDZ, ZERO,
 | |
|      $               WORK, N )
 | |
|          DO 20 I = 1, M
 | |
|             CALL SSCAL( N, D( I ), Z( 1, I ), 1 )
 | |
|    20    CONTINUE
 | |
|          CALL SSYMM( 'Left', UPLO, N, M, ONE, A, LDA, WORK, N, -ONE, Z,
 | |
|      $               LDZ )
 | |
| *
 | |
|          RESULT( 1 ) = ( SLANGE( '1', N, M, Z, LDZ, WORK ) / ANORM ) /
 | |
|      $                 ( N*ULP )
 | |
| *
 | |
|       ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *        Norm of BAZ - ZD
 | |
| *
 | |
|          CALL SSYMM( 'Left', UPLO, N, M, ONE, A, LDA, Z, LDZ, ZERO,
 | |
|      $               WORK, N )
 | |
|          DO 30 I = 1, M
 | |
|             CALL SSCAL( N, D( I ), Z( 1, I ), 1 )
 | |
|    30    CONTINUE
 | |
|          CALL SSYMM( 'Left', UPLO, N, M, ONE, B, LDB, WORK, N, -ONE, Z,
 | |
|      $               LDZ )
 | |
| *
 | |
|          RESULT( 1 ) = ( SLANGE( '1', N, M, Z, LDZ, WORK ) / ANORM ) /
 | |
|      $                 ( N*ULP )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSGT01
 | |
| *
 | |
|       END
 |