351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAED3 used by SSTEDC. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAED3 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed3.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed3.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed3.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
 | |
| *                          CTOT, W, S, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDQ, N, N1
 | |
| *       REAL               RHO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            CTOT( * ), INDX( * )
 | |
| *       REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
 | |
| *      $                   S( * ), W( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAED3 finds the roots of the secular equation, as defined by the
 | |
| *> values in D, W, and RHO, between 1 and K.  It makes the
 | |
| *> appropriate calls to SLAED4 and then updates the eigenvectors by
 | |
| *> multiplying the matrix of eigenvectors of the pair of eigensystems
 | |
| *> being combined by the matrix of eigenvectors of the K-by-K system
 | |
| *> which is solved here.
 | |
| *>
 | |
| *> This code makes very mild assumptions about floating point
 | |
| *> arithmetic. It will work on machines with a guard digit in
 | |
| *> add/subtract, or on those binary machines without guard digits
 | |
| *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
 | |
| *> It could conceivably fail on hexadecimal or decimal machines
 | |
| *> without guard digits, but we know of none.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of terms in the rational function to be solved by
 | |
| *>          SLAED4.  K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns in the Q matrix.
 | |
| *>          N >= K (deflation may result in N>K).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N1
 | |
| *> \verbatim
 | |
| *>          N1 is INTEGER
 | |
| *>          The location of the last eigenvalue in the leading submatrix.
 | |
| *>          min(1,N) <= N1 <= N/2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          D(I) contains the updated eigenvalues for
 | |
| *>          1 <= I <= K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,N)
 | |
| *>          Initially the first K columns are used as workspace.
 | |
| *>          On output the columns 1 to K contain
 | |
| *>          the updated eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.  LDQ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RHO
 | |
| *> \verbatim
 | |
| *>          RHO is REAL
 | |
| *>          The value of the parameter in the rank one update equation.
 | |
| *>          RHO >= 0 required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DLAMDA
 | |
| *> \verbatim
 | |
| *>          DLAMDA is REAL array, dimension (K)
 | |
| *>          The first K elements of this array contain the old roots
 | |
| *>          of the deflated updating problem.  These are the poles
 | |
| *>          of the secular equation. May be changed on output by
 | |
| *>          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
 | |
| *>          Cray-2, or Cray C-90, as described above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q2
 | |
| *> \verbatim
 | |
| *>          Q2 is REAL array, dimension (LDQ2*N)
 | |
| *>          The first K columns of this matrix contain the non-deflated
 | |
| *>          eigenvectors for the split problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INDX
 | |
| *> \verbatim
 | |
| *>          INDX is INTEGER array, dimension (N)
 | |
| *>          The permutation used to arrange the columns of the deflated
 | |
| *>          Q matrix into three groups (see SLAED2).
 | |
| *>          The rows of the eigenvectors found by SLAED4 must be likewise
 | |
| *>          permuted before the matrix multiply can take place.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CTOT
 | |
| *> \verbatim
 | |
| *>          CTOT is INTEGER array, dimension (4)
 | |
| *>          A count of the total number of the various types of columns
 | |
| *>          in Q, as described in INDX.  The fourth column type is any
 | |
| *>          column which has been deflated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (K)
 | |
| *>          The first K elements of this array contain the components
 | |
| *>          of the deflation-adjusted updating vector. Destroyed on
 | |
| *>          output.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (N1 + 1)*K
 | |
| *>          Will contain the eigenvectors of the repaired matrix which
 | |
| *>          will be multiplied by the previously accumulated eigenvectors
 | |
| *>          to update the system.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = 1, an eigenvalue did not converge
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA \n
 | |
| *>  Modified by Francoise Tisseur, University of Tennessee
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
 | |
|      $                   CTOT, W, S, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDQ, N, N1
 | |
|       REAL               RHO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            CTOT( * ), INDX( * )
 | |
|       REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
 | |
|      $                   S( * ), W( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, II, IQ2, J, N12, N2, N23
 | |
|       REAL               TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMC3, SNRM2
 | |
|       EXTERNAL           SLAMC3, SNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED4, SLASET, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( K.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.K ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLAED3', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( K.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
 | |
| *     be computed with high relative accuracy (barring over/underflow).
 | |
| *     This is a problem on machines without a guard digit in
 | |
| *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
 | |
| *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
 | |
| *     which on any of these machines zeros out the bottommost
 | |
| *     bit of DLAMDA(I) if it is 1; this makes the subsequent
 | |
| *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
 | |
| *     occurs. On binary machines with a guard digit (almost all
 | |
| *     machines) it does not change DLAMDA(I) at all. On hexadecimal
 | |
| *     and decimal machines with a guard digit, it slightly
 | |
| *     changes the bottommost bits of DLAMDA(I). It does not account
 | |
| *     for hexadecimal or decimal machines without guard digits
 | |
| *     (we know of none). We use a subroutine call to compute
 | |
| *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
 | |
| *     this code.
 | |
| *
 | |
|       DO 10 I = 1, K
 | |
|          DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
 | |
|    10 CONTINUE
 | |
| *
 | |
|       DO 20 J = 1, K
 | |
|          CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
 | |
| *
 | |
| *        If the zero finder fails, the computation is terminated.
 | |
| *
 | |
|          IF( INFO.NE.0 )
 | |
|      $      GO TO 120
 | |
|    20 CONTINUE
 | |
| *
 | |
|       IF( K.EQ.1 )
 | |
|      $   GO TO 110
 | |
|       IF( K.EQ.2 ) THEN
 | |
|          DO 30 J = 1, K
 | |
|             W( 1 ) = Q( 1, J )
 | |
|             W( 2 ) = Q( 2, J )
 | |
|             II = INDX( 1 )
 | |
|             Q( 1, J ) = W( II )
 | |
|             II = INDX( 2 )
 | |
|             Q( 2, J ) = W( II )
 | |
|    30    CONTINUE
 | |
|          GO TO 110
 | |
|       END IF
 | |
| *
 | |
| *     Compute updated W.
 | |
| *
 | |
|       CALL SCOPY( K, W, 1, S, 1 )
 | |
| *
 | |
| *     Initialize W(I) = Q(I,I)
 | |
| *
 | |
|       CALL SCOPY( K, Q, LDQ+1, W, 1 )
 | |
|       DO 60 J = 1, K
 | |
|          DO 40 I = 1, J - 1
 | |
|             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
 | |
|    40    CONTINUE
 | |
|          DO 50 I = J + 1, K
 | |
|             W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
 | |
|    50    CONTINUE
 | |
|    60 CONTINUE
 | |
|       DO 70 I = 1, K
 | |
|          W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Compute eigenvectors of the modified rank-1 modification.
 | |
| *
 | |
|       DO 100 J = 1, K
 | |
|          DO 80 I = 1, K
 | |
|             S( I ) = W( I ) / Q( I, J )
 | |
|    80    CONTINUE
 | |
|          TEMP = SNRM2( K, S, 1 )
 | |
|          DO 90 I = 1, K
 | |
|             II = INDX( I )
 | |
|             Q( I, J ) = S( II ) / TEMP
 | |
|    90    CONTINUE
 | |
|   100 CONTINUE
 | |
| *
 | |
| *     Compute the updated eigenvectors.
 | |
| *
 | |
|   110 CONTINUE
 | |
| *
 | |
|       N2 = N - N1
 | |
|       N12 = CTOT( 1 ) + CTOT( 2 )
 | |
|       N23 = CTOT( 2 ) + CTOT( 3 )
 | |
| *
 | |
|       CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
 | |
|       IQ2 = N1*N12 + 1
 | |
|       IF( N23.NE.0 ) THEN
 | |
|          CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
 | |
|      $               ZERO, Q( N1+1, 1 ), LDQ )
 | |
|       ELSE
 | |
|          CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
 | |
|       END IF
 | |
| *
 | |
|       CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 )
 | |
|       IF( N12.NE.0 ) THEN
 | |
|          CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
 | |
|      $               LDQ )
 | |
|       ELSE
 | |
|          CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
 | |
|       END IF
 | |
| *
 | |
| *
 | |
|   120 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAED3
 | |
| *
 | |
|       END
 |