491 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGETSLS
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
 | |
| *     $                     WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGETSLS solves overdetermined or underdetermined real linear systems
 | |
| *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
 | |
| *> factorization of A.  It is assumed that A has full rank.
 | |
| *>
 | |
| *>
 | |
| *>
 | |
| *> The following options are provided:
 | |
| *>
 | |
| *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
 | |
| *>    an overdetermined system, i.e., solve the least squares problem
 | |
| *>                 minimize || B - A*X ||.
 | |
| *>
 | |
| *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
 | |
| *>    an underdetermined system A * X = B.
 | |
| *>
 | |
| *> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
 | |
| *>    an undetermined system A**T * X = B.
 | |
| *>
 | |
| *> 4. If TRANS = 'T' and m < n:  find the least squares solution of
 | |
| *>    an overdetermined system, i.e., solve the least squares problem
 | |
| *>                 minimize || B - A**T * X ||.
 | |
| *>
 | |
| *> Several right hand side vectors b and solution vectors x can be
 | |
| *> handled in a single call; they are stored as the columns of the
 | |
| *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | |
| *> matrix X.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N': the linear system involves A;
 | |
| *>          = 'T': the linear system involves A**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of
 | |
| *>          columns of the matrices B and X. NRHS >=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit,
 | |
| *>          A is overwritten by details of its QR or LQ
 | |
| *>          factorization as returned by SGEQR or SGELQ.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the matrix B of right hand side vectors, stored
 | |
| *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
 | |
| *>          if TRANS = 'T'.
 | |
| *>          On exit, if INFO = 0, B is overwritten by the solution
 | |
| *>          vectors, stored columnwise:
 | |
| *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
 | |
| *>          squares solution vectors.
 | |
| *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
 | |
| *>          minimum norm solution vectors;
 | |
| *>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
 | |
| *>          minimum norm solution vectors;
 | |
| *>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
 | |
| *>          least squares solution vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          (workspace) REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
 | |
| *>          or optimal, if query was assumed) LWORK.
 | |
| *>          See LWORK for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If LWORK = -1 or -2, then a workspace query is assumed.
 | |
| *>          If LWORK = -1, the routine calculates optimal size of WORK for the
 | |
| *>          optimal performance and returns this value in WORK(1).
 | |
| *>          If LWORK = -2, the routine calculates minimal size of WORK and 
 | |
| *>          returns this value in WORK(1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO =  i, the i-th diagonal element of the
 | |
| *>                triangular factor of A is zero, so that A does not have
 | |
| *>                full rank; the least squares solution could not be
 | |
| *>                computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realGEsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
 | |
|      $                    WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, TRAN
 | |
|       INTEGER            I, IASCL, IBSCL, J, MAXMN, BROW,
 | |
|      $                   SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
 | |
|      $                   WSIZEO, WSIZEM, INFO2
 | |
|       REAL               ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           LSAME, SLABAD, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEQR, SGEMQR, SLASCL, SLASET,
 | |
|      $                   STRTRS, XERBLA, SGELQ, SGEMLQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL, MAX, MIN, INT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments.
 | |
| *
 | |
|       INFO = 0
 | |
|       MAXMN = MAX( M, N )
 | |
|       TRAN  = LSAME( TRANS, 'T' )
 | |
| *
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
 | |
|       IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
 | |
|      $    LSAME( TRANS, 'T' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *     Determine the optimum and minimum LWORK
 | |
| *
 | |
|        IF( M.GE.N ) THEN
 | |
|          CALL SGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
 | |
|          TSZO = INT( TQ( 1 ) )
 | |
|          LWO  = INT( WORKQ( 1 ) )
 | |
|          CALL SGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
 | |
|      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
 | |
|          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
 | |
|          CALL SGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
 | |
|          TSZM = INT( TQ( 1 ) )
 | |
|          LWM  = INT( WORKQ( 1 ) )
 | |
|          CALL SGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
 | |
|      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
 | |
|          LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
 | |
|          WSIZEO = TSZO + LWO
 | |
|          WSIZEM = TSZM + LWM
 | |
|        ELSE
 | |
|          CALL SGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
 | |
|          TSZO = INT( TQ( 1 ) )
 | |
|          LWO  = INT( WORKQ( 1 ) )
 | |
|          CALL SGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
 | |
|      $                TSZO, B, LDB, WORKQ, -1, INFO2 )
 | |
|          LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
 | |
|          CALL SGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
 | |
|          TSZM = INT( TQ( 1 ) )
 | |
|          LWM  = INT( WORKQ( 1 ) )
 | |
|          CALL SGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
 | |
|      $                TSZM, B, LDB, WORKQ, -1, INFO2 )
 | |
|          LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
 | |
|          WSIZEO = TSZO + LWO
 | |
|          WSIZEM = TSZM + LWM
 | |
|        END IF
 | |
| *
 | |
|        IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
 | |
|           INFO = -10
 | |
|        END IF
 | |
| *
 | |
|        WORK( 1 ) = REAL( WSIZEO )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|         CALL XERBLA( 'SGETSLS', -INFO )
 | |
|         RETURN
 | |
|       END IF
 | |
|       IF( LQUERY ) THEN
 | |
|         IF( LWORK.EQ.-2 ) WORK( 1 ) = REAL( WSIZEM )
 | |
|         RETURN
 | |
|       END IF
 | |
|       IF( LWORK.LT.WSIZEO ) THEN
 | |
|         LW1 = TSZM
 | |
|         LW2 = LWM
 | |
|       ELSE
 | |
|         LW1 = TSZO
 | |
|         LW2 = LWO
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | |
|            CALL SLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
 | |
|      $                  B, LDB )
 | |
|            RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine parameters
 | |
| *
 | |
|        SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
 | |
|        BIGNUM = ONE / SMLNUM
 | |
|        CALL SLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
 | |
|       IASCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 1
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | |
|          IASCL = 2
 | |
|       ELSE IF( ANRM.EQ.ZERO ) THEN
 | |
| *
 | |
| *        Matrix all zero. Return zero solution.
 | |
| *
 | |
|          CALL SLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
 | |
|          GO TO 50
 | |
|       END IF
 | |
| *
 | |
|       BROW = M
 | |
|       IF ( TRAN ) THEN
 | |
|         BROW = N
 | |
|       END IF
 | |
|       BNRM = SLANGE( 'M', BROW, NRHS, B, LDB, WORK )
 | |
|       IBSCL = 0
 | |
|       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm up to SMLNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|          IBSCL = 1
 | |
|       ELSE IF( BNRM.GT.BIGNUM ) THEN
 | |
| *
 | |
| *        Scale matrix norm down to BIGNUM
 | |
| *
 | |
|          CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
 | |
|      $                INFO )
 | |
|          IBSCL = 2
 | |
|       END IF
 | |
| *
 | |
|       IF ( M.GE.N ) THEN
 | |
| *
 | |
| *        compute QR factorization of A
 | |
| *
 | |
|         CALL SGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
 | |
|      $              WORK( 1 ), LW2, INFO )
 | |
|         IF ( .NOT.TRAN ) THEN
 | |
| *
 | |
| *           Least-Squares Problem min || A * X - B ||
 | |
| *
 | |
| *           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
 | |
| *
 | |
|           CALL SGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
 | |
|      $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | |
|      $                 INFO )
 | |
| *
 | |
| *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
 | |
| *
 | |
|           CALL STRTRS( 'U', 'N', 'N', N, NRHS,
 | |
|      $                  A, LDA, B, LDB, INFO )
 | |
|           IF( INFO.GT.0 ) THEN
 | |
|             RETURN
 | |
|           END IF
 | |
|           SCLLEN = N
 | |
|         ELSE
 | |
| *
 | |
| *           Overdetermined system of equations A**T * X = B
 | |
| *
 | |
| *           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL STRTRS( 'U', 'T', 'N', N, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *           B(N+1:M,1:NRHS) = ZERO
 | |
| *
 | |
|             DO 20 J = 1, NRHS
 | |
|                DO 10 I = N + 1, M
 | |
|                   B( I, J ) = ZERO
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL SGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
 | |
|      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | |
|      $                   INFO )
 | |
| *
 | |
|             SCLLEN = M
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute LQ factorization of A
 | |
| *
 | |
|          CALL SGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
 | |
|      $               WORK( 1 ), LW2, INFO )
 | |
| *
 | |
| *        workspace at least M, optimally M*NB.
 | |
| *
 | |
|          IF( .NOT.TRAN ) THEN
 | |
| *
 | |
| *           underdetermined system of equations A * X = B
 | |
| *
 | |
| *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL STRTRS( 'L', 'N', 'N', M, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
| *           B(M+1:N,1:NRHS) = 0
 | |
| *
 | |
|             DO 40 J = 1, NRHS
 | |
|                DO 30 I = M + 1, N
 | |
|                   B( I, J ) = ZERO
 | |
|    30          CONTINUE
 | |
|    40       CONTINUE
 | |
| *
 | |
| *           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL SGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
 | |
|      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           workspace at least NRHS, optimally NRHS*NB
 | |
| *
 | |
|             SCLLEN = N
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           overdetermined system min || A**T * X - B ||
 | |
| *
 | |
| *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
 | |
| *
 | |
|             CALL SGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
 | |
|      $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | |
|      $                   INFO )
 | |
| *
 | |
| *           workspace at least NRHS, optimally NRHS*NB
 | |
| *
 | |
| *           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
 | |
| *
 | |
|             CALL STRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
 | |
|      $                   A, LDA, B, LDB, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
| *
 | |
|             SCLLEN = M
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling
 | |
| *
 | |
|       IF( IASCL.EQ.1 ) THEN
 | |
|         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
 | |
|      $               INFO )
 | |
|       ELSE IF( IASCL.EQ.2 ) THEN
 | |
|         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
 | |
|      $               INFO )
 | |
|       END IF
 | |
|       IF( IBSCL.EQ.1 ) THEN
 | |
|         CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | |
|      $               INFO )
 | |
|       ELSE IF( IBSCL.EQ.2 ) THEN
 | |
|         CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | |
|      $               INFO )
 | |
|       END IF
 | |
| *
 | |
|    50 CONTINUE
 | |
|       WORK( 1 ) = REAL( TSZO + LWO )
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGETSLS
 | |
| *
 | |
|       END
 |