281 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSYGS2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygs2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygs2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygs2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, ITYPE, LDA, LDB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSYGS2 reduces a real symmetric-definite generalized eigenproblem
 | |
| *> to standard form.
 | |
| *>
 | |
| *> If ITYPE = 1, the problem is A*x = lambda*B*x,
 | |
| *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 | |
| *>
 | |
| *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 | |
| *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
 | |
| *>
 | |
| *> B must have been previously factorized as U**T *U or L*L**T by DPOTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
 | |
| *>          = 2 or 3: compute U*A*U**T or L**T *A*L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored, and how B has been factorized.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          n by n upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading n by n lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the transformed matrix, stored in the
 | |
| *>          same format as A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,N)
 | |
| *>          The triangular factor from the Cholesky factorization of B,
 | |
| *>          as returned by DPOTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, ITYPE, LDA, LDB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, HALF
 | |
|       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            K
 | |
|       DOUBLE PRECISION   AKK, BKK, CT
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DAXPY, DSCAL, DSYR2, DTRMV, DTRSV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSYGS2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( ITYPE.EQ.1 ) THEN
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Compute inv(U**T)*A*inv(U)
 | |
| *
 | |
|             DO 10 K = 1, N
 | |
| *
 | |
| *              Update the upper triangle of A(k:n,k:n)
 | |
| *
 | |
|                AKK = A( K, K )
 | |
|                BKK = B( K, K )
 | |
|                AKK = AKK / BKK**2
 | |
|                A( K, K ) = AKK
 | |
|                IF( K.LT.N ) THEN
 | |
|                   CALL DSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
 | |
|                   CT = -HALF*AKK
 | |
|                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
 | |
|      $                        LDA )
 | |
|                   CALL DSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
 | |
|      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
 | |
|                   CALL DAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
 | |
|      $                        LDA )
 | |
|                   CALL DTRSV( UPLO, 'Transpose', 'Non-unit', N-K,
 | |
|      $                        B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
 | |
|                END IF
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute inv(L)*A*inv(L**T)
 | |
| *
 | |
|             DO 20 K = 1, N
 | |
| *
 | |
| *              Update the lower triangle of A(k:n,k:n)
 | |
| *
 | |
|                AKK = A( K, K )
 | |
|                BKK = B( K, K )
 | |
|                AKK = AKK / BKK**2
 | |
|                A( K, K ) = AKK
 | |
|                IF( K.LT.N ) THEN
 | |
|                   CALL DSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
 | |
|                   CT = -HALF*AKK
 | |
|                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
 | |
|                   CALL DSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
 | |
|      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
 | |
|                   CALL DAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
 | |
|                   CALL DTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
 | |
|      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
 | |
|                END IF
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Compute U*A*U**T
 | |
| *
 | |
|             DO 30 K = 1, N
 | |
| *
 | |
| *              Update the upper triangle of A(1:k,1:k)
 | |
| *
 | |
|                AKK = A( K, K )
 | |
|                BKK = B( K, K )
 | |
|                CALL DTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
 | |
|      $                     LDB, A( 1, K ), 1 )
 | |
|                CT = HALF*AKK
 | |
|                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
 | |
|                CALL DSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
 | |
|      $                     A, LDA )
 | |
|                CALL DAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
 | |
|                CALL DSCAL( K-1, BKK, A( 1, K ), 1 )
 | |
|                A( K, K ) = AKK*BKK**2
 | |
|    30       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute L**T *A*L
 | |
| *
 | |
|             DO 40 K = 1, N
 | |
| *
 | |
| *              Update the lower triangle of A(1:k,1:k)
 | |
| *
 | |
|                AKK = A( K, K )
 | |
|                BKK = B( K, K )
 | |
|                CALL DTRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
 | |
|      $                     A( K, 1 ), LDA )
 | |
|                CT = HALF*AKK
 | |
|                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
 | |
|                CALL DSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
 | |
|      $                     LDB, A, LDA )
 | |
|                CALL DAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
 | |
|                CALL DSCAL( K-1, BKK, A( K, 1 ), LDA )
 | |
|                A( K, K ) = AKK*BKK**2
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYGS2
 | |
| *
 | |
|       END
 |