542 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSYCONVF_ROOK
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSYCONVF_ROOK + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyconvf_rook.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyconvf_rook.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyconvf_rook.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSYCONVF_ROOK( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO, WAY
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), E( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *> If parameter WAY = 'C':
 | |
| *> DSYCONVF_ROOK converts the factorization output format used in
 | |
| *> DSYTRF_ROOK provided on entry in parameter A into the factorization
 | |
| *> output format used in DSYTRF_RK (or DSYTRF_BK) that is stored
 | |
| *> on exit in parameters A and E. IPIV format for DSYTRF_ROOK and
 | |
| *> DSYTRF_RK (or DSYTRF_BK) is the same and is not converted.
 | |
| *>
 | |
| *> If parameter WAY = 'R':
 | |
| *> DSYCONVF_ROOK performs the conversion in reverse direction, i.e.
 | |
| *> converts the factorization output format used in DSYTRF_RK
 | |
| *> (or DSYTRF_BK) provided on entry in parameters A and E into
 | |
| *> the factorization output format used in DSYTRF_ROOK that is stored
 | |
| *> on exit in parameter A. IPIV format for DSYTRF_ROOK and
 | |
| *> DSYTRF_RK (or DSYTRF_BK) is the same and is not converted.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are
 | |
| *>          stored as an upper or lower triangular matrix A.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WAY
 | |
| *> \verbatim
 | |
| *>          WAY is CHARACTER*1
 | |
| *>          = 'C': Convert
 | |
| *>          = 'R': Revert
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>
 | |
| *>          1) If WAY ='C':
 | |
| *>
 | |
| *>          On entry, contains factorization details in format used in
 | |
| *>          DSYTRF_ROOK:
 | |
| *>            a) all elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A and on superdiagonal
 | |
| *>               (or subdiagonal) of A, and
 | |
| *>            b) If UPLO = 'U': multipliers used to obtain factor U
 | |
| *>               in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': multipliers used to obtain factor L
 | |
| *>               in the superdiagonal part of A.
 | |
| *>
 | |
| *>          On exit, contains factorization details in format used in
 | |
| *>          DSYTRF_RK or DSYTRF_BK:
 | |
| *>            a) ONLY diagonal elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                are stored on exit in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *>
 | |
| *>          2) If WAY = 'R':
 | |
| *>
 | |
| *>          On entry, contains factorization details in format used in
 | |
| *>          DSYTRF_RK or DSYTRF_BK:
 | |
| *>            a) ONLY diagonal elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                are stored on exit in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *>
 | |
| *>          On exit, contains factorization details in format used in
 | |
| *>          DSYTRF_ROOK:
 | |
| *>            a) all elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A and on superdiagonal
 | |
| *>               (or subdiagonal) of A, and
 | |
| *>            b) If UPLO = 'U': multipliers used to obtain factor U
 | |
| *>               in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': multipliers used to obtain factor L
 | |
| *>               in the superdiagonal part of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N)
 | |
| *>
 | |
| *>          1) If WAY ='C':
 | |
| *>
 | |
| *>          On entry, just a workspace.
 | |
| *>
 | |
| *>          On exit, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the symmetric block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
 | |
| *>
 | |
| *>          2) If WAY = 'R':
 | |
| *>
 | |
| *>          On entry, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the symmetric block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
 | |
| *>
 | |
| *>          On exit, is not changed
 | |
| *> \endverbatim
 | |
| *.
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          On entry, details of the interchanges and the block
 | |
| *>          structure of D as determined:
 | |
| *>          1) by DSYTRF_ROOK, if WAY ='C';
 | |
| *>          2) by DSYTRF_RK (or DSYTRF_BK), if WAY ='R'.
 | |
| *>          The IPIV format is the same for all these routines.
 | |
| *>
 | |
| *>          On exit, is not changed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup doubleSYcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  November 2017,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSYCONVF_ROOK( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO, WAY
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), E( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSWAP, XERBLA
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER, CONVERT
 | |
|       INTEGER            I, IP, IP2
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       CONVERT = LSAME( WAY, 'C' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
| 
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSYCONVF_ROOK', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Begin A is UPPER
 | |
| *
 | |
|          IF ( CONVERT ) THEN
 | |
| *
 | |
| *           Convert A (A is upper)
 | |
| *
 | |
| *
 | |
| *           Convert VALUE
 | |
| *
 | |
| *           Assign superdiagonal entries of D to array E and zero out
 | |
| *           corresponding entries in input storage A
 | |
| *
 | |
|             I = N
 | |
|             E( 1 ) = ZERO
 | |
|             DO WHILE ( I.GT.1 )
 | |
|                IF( IPIV( I ).LT.0 ) THEN
 | |
|                   E( I ) = A( I-1, I )
 | |
|                   E( I-1 ) = ZERO
 | |
|                   A( I-1, I ) = ZERO
 | |
|                   I = I - 1
 | |
|                ELSE
 | |
|                   E( I ) = ZERO
 | |
|                END IF
 | |
|                I = I - 1
 | |
|             END DO
 | |
| *
 | |
| *           Convert PERMUTATIONS
 | |
| *
 | |
| *           Apply permutations to submatrices of upper part of A
 | |
| *           in factorization order where i decreases from N to 1
 | |
| *
 | |
|             I = N
 | |
|             DO WHILE ( I.GE.1 )
 | |
|                IF( IPIV( I ).GT.0 ) THEN
 | |
| *
 | |
| *                 1-by-1 pivot interchange
 | |
| *
 | |
| *                 Swap rows i and IPIV(i) in A(1:i,N-i:N)
 | |
| *
 | |
|                   IP = IPIV( I )
 | |
|                   IF( I.LT.N ) THEN
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( N-I, A( I, I+1 ), LDA,
 | |
|      $                              A( IP, I+1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 2-by-2 pivot interchange
 | |
| *
 | |
| *                 Swap rows i and IPIV(i) and i-1 and IPIV(i-1)
 | |
| *                 in A(1:i,N-i:N)
 | |
| *
 | |
|                   IP = -IPIV( I )
 | |
|                   IP2 = -IPIV( I-1 )
 | |
|                   IF( I.LT.N ) THEN
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( N-I, A( I, I+1 ), LDA,
 | |
|      $                              A( IP, I+1 ), LDA )
 | |
|                      END IF
 | |
|                      IF( IP2.NE.(I-1) ) THEN
 | |
|                         CALL DSWAP( N-I, A( I-1, I+1 ), LDA,
 | |
|      $                              A( IP2, I+1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   I = I - 1
 | |
| *
 | |
|                END IF
 | |
|                I = I - 1
 | |
|             END DO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Revert A (A is upper)
 | |
| *
 | |
| *
 | |
| *           Revert PERMUTATIONS
 | |
| *
 | |
| *           Apply permutations to submatrices of upper part of A
 | |
| *           in reverse factorization order where i increases from 1 to N
 | |
| *
 | |
|             I = 1
 | |
|             DO WHILE ( I.LE.N )
 | |
|                IF( IPIV( I ).GT.0 ) THEN
 | |
| *
 | |
| *                 1-by-1 pivot interchange
 | |
| *
 | |
| *                 Swap rows i and IPIV(i) in A(1:i,N-i:N)
 | |
| *
 | |
|                   IP = IPIV( I )
 | |
|                   IF( I.LT.N ) THEN
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( N-I, A( IP, I+1 ), LDA,
 | |
|      $                              A( I, I+1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 2-by-2 pivot interchange
 | |
| *
 | |
| *                 Swap rows i-1 and IPIV(i-1) and i and IPIV(i)
 | |
| *                 in A(1:i,N-i:N)
 | |
| *
 | |
|                   I = I + 1
 | |
|                   IP = -IPIV( I )
 | |
|                   IP2 = -IPIV( I-1 )
 | |
|                   IF( I.LT.N ) THEN
 | |
|                      IF( IP2.NE.(I-1) ) THEN
 | |
|                         CALL DSWAP( N-I, A( IP2, I+1 ), LDA,
 | |
|      $                              A( I-1, I+1 ), LDA )
 | |
|                      END IF
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( N-I, A( IP, I+1 ), LDA,
 | |
|      $                              A( I, I+1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                END IF
 | |
|                I = I + 1
 | |
|             END DO
 | |
| *
 | |
| *           Revert VALUE
 | |
| *           Assign superdiagonal entries of D from array E to
 | |
| *           superdiagonal entries of A.
 | |
| *
 | |
|             I = N
 | |
|             DO WHILE ( I.GT.1 )
 | |
|                IF( IPIV( I ).LT.0 ) THEN
 | |
|                   A( I-1, I ) = E( I )
 | |
|                   I = I - 1
 | |
|                END IF
 | |
|                I = I - 1
 | |
|             END DO
 | |
| *
 | |
| *        End A is UPPER
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Begin A is LOWER
 | |
| *
 | |
|          IF ( CONVERT ) THEN
 | |
| *
 | |
| *           Convert A (A is lower)
 | |
| *
 | |
| *
 | |
| *           Convert VALUE
 | |
| *           Assign subdiagonal entries of D to array E and zero out
 | |
| *           corresponding entries in input storage A
 | |
| *
 | |
|             I = 1
 | |
|             E( N ) = ZERO
 | |
|             DO WHILE ( I.LE.N )
 | |
|                IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
 | |
|                   E( I ) = A( I+1, I )
 | |
|                   E( I+1 ) = ZERO
 | |
|                   A( I+1, I ) = ZERO
 | |
|                   I = I + 1
 | |
|                ELSE
 | |
|                   E( I ) = ZERO
 | |
|                END IF
 | |
|                I = I + 1
 | |
|             END DO
 | |
| *
 | |
| *           Convert PERMUTATIONS
 | |
| *
 | |
| *           Apply permutations to submatrices of lower part of A
 | |
| *           in factorization order where i increases from 1 to N
 | |
| *
 | |
|             I = 1
 | |
|             DO WHILE ( I.LE.N )
 | |
|                IF( IPIV( I ).GT.0 ) THEN
 | |
| *
 | |
| *                 1-by-1 pivot interchange
 | |
| *
 | |
| *                 Swap rows i and IPIV(i) in A(i:N,1:i-1)
 | |
| *
 | |
|                   IP = IPIV( I )
 | |
|                   IF ( I.GT.1 ) THEN
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( I-1, A( I, 1 ), LDA,
 | |
|      $                              A( IP, 1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 2-by-2 pivot interchange
 | |
| *
 | |
| *                 Swap rows i and IPIV(i) and i+1 and IPIV(i+1)
 | |
| *                 in A(i:N,1:i-1)
 | |
| *
 | |
|                   IP = -IPIV( I )
 | |
|                   IP2 = -IPIV( I+1 )
 | |
|                   IF ( I.GT.1 ) THEN
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( I-1, A( I, 1 ), LDA,
 | |
|      $                              A( IP, 1 ), LDA )
 | |
|                      END IF
 | |
|                      IF( IP2.NE.(I+1) ) THEN
 | |
|                         CALL DSWAP( I-1, A( I+1, 1 ), LDA,
 | |
|      $                              A( IP2, 1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   I = I + 1
 | |
| *
 | |
|                END IF
 | |
|                I = I + 1
 | |
|             END DO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Revert A (A is lower)
 | |
| *
 | |
| *
 | |
| *           Revert PERMUTATIONS
 | |
| *
 | |
| *           Apply permutations to submatrices of lower part of A
 | |
| *           in reverse factorization order where i decreases from N to 1
 | |
| *
 | |
|             I = N
 | |
|             DO WHILE ( I.GE.1 )
 | |
|                IF( IPIV( I ).GT.0 ) THEN
 | |
| *
 | |
| *                 1-by-1 pivot interchange
 | |
| *
 | |
| *                 Swap rows i and IPIV(i) in A(i:N,1:i-1)
 | |
| *
 | |
|                   IP = IPIV( I )
 | |
|                   IF ( I.GT.1 ) THEN
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( I-1, A( IP, 1 ), LDA,
 | |
|      $                              A( I, 1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 2-by-2 pivot interchange
 | |
| *
 | |
| *                 Swap rows i+1 and IPIV(i+1) and i and IPIV(i)
 | |
| *                 in A(i:N,1:i-1)
 | |
| *
 | |
|                   I = I - 1
 | |
|                   IP = -IPIV( I )
 | |
|                   IP2 = -IPIV( I+1 )
 | |
|                   IF ( I.GT.1 ) THEN
 | |
|                      IF( IP2.NE.(I+1) ) THEN
 | |
|                         CALL DSWAP( I-1, A( IP2, 1 ), LDA,
 | |
|      $                              A( I+1, 1 ), LDA )
 | |
|                      END IF
 | |
|                      IF( IP.NE.I ) THEN
 | |
|                         CALL DSWAP( I-1, A( IP, 1 ), LDA,
 | |
|      $                              A( I, 1 ), LDA )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                END IF
 | |
|                I = I - 1
 | |
|             END DO
 | |
| *
 | |
| *           Revert VALUE
 | |
| *           Assign subdiagonal entries of D from array E to
 | |
| *           subgiagonal entries of A.
 | |
| *
 | |
|             I = 1
 | |
|             DO WHILE ( I.LE.N-1 )
 | |
|                IF( IPIV( I ).LT.0 ) THEN
 | |
|                   A( I + 1, I ) = E( I )
 | |
|                   I = I + 1
 | |
|                END IF
 | |
|                I = I + 1
 | |
|             END DO
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        End A is LOWER
 | |
| *
 | |
|       END IF
 | |
| 
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYCONVF_ROOK
 | |
| *
 | |
|       END
 |