321 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLA_SYRPVGRW + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_syrpvgrw.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_syrpvgrw.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_syrpvgrw.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL FUNCTION SLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
 | |
| *                                   WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER*1        UPLO
 | |
| *       INTEGER            N, INFO, LDA, LDAF
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>
 | |
| *> SLA_SYRPVGRW computes the reciprocal pivot growth factor
 | |
| *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
 | |
| *> much less than 1, the stability of the LU factorization of the
 | |
| *> (equilibrated) matrix A could be poor. This also means that the
 | |
| *> solution X, estimated condition numbers, and error bounds could be
 | |
| *> unreliable.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>       = 'U':  Upper triangle of A is stored;
 | |
| *>       = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>     The number of linear equations, i.e., the order of the
 | |
| *>     matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>     The value of INFO returned from SSYTRF, .i.e., the pivot in
 | |
| *>     column INFO is exactly 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>     On entry, the N-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>     The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AF
 | |
| *> \verbatim
 | |
| *>          AF is REAL array, dimension (LDAF,N)
 | |
| *>     The block diagonal matrix D and the multipliers used to
 | |
| *>     obtain the factor U or L as computed by SSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAF
 | |
| *> \verbatim
 | |
| *>          LDAF is INTEGER
 | |
| *>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>     Details of the interchanges and the block structure of D
 | |
| *>     as determined by SSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL FUNCTION SLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
 | |
|      $                            WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*1        UPLO
 | |
|       INTEGER            N, INFO, LDA, LDAF
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               A( LDA, * ), AF( LDAF, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            NCOLS, I, J, K, KP
 | |
|       REAL               AMAX, UMAX, RPVGRW, TMP
 | |
|       LOGICAL            UPPER
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       EXTERNAL           LSAME
 | |
|       LOGICAL            LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       UPPER = LSAME( 'Upper', UPLO )
 | |
|       IF ( INFO.EQ.0 ) THEN
 | |
|          IF ( UPPER ) THEN
 | |
|             NCOLS = 1
 | |
|          ELSE
 | |
|             NCOLS = N
 | |
|          END IF
 | |
|       ELSE
 | |
|          NCOLS = INFO
 | |
|       END IF
 | |
| 
 | |
|       RPVGRW = 1.0
 | |
|       DO I = 1, 2*N
 | |
|          WORK( I ) = 0.0
 | |
|       END DO
 | |
| *
 | |
| *     Find the max magnitude entry of each column of A.  Compute the max
 | |
| *     for all N columns so we can apply the pivot permutation while
 | |
| *     looping below.  Assume a full factorization is the common case.
 | |
| *
 | |
|       IF ( UPPER ) THEN
 | |
|          DO J = 1, N
 | |
|             DO I = 1, J
 | |
|                WORK( N+I ) = MAX( ABS( A( I, J ) ), WORK( N+I ) )
 | |
|                WORK( N+J ) = MAX( ABS( A( I, J ) ), WORK( N+J ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO J = 1, N
 | |
|             DO I = J, N
 | |
|                WORK( N+I ) = MAX( ABS( A( I, J ) ), WORK( N+I ) )
 | |
|                WORK( N+J ) = MAX( ABS( A( I, J ) ), WORK( N+J ) )
 | |
|             END DO
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Now find the max magnitude entry of each column of U or L.  Also
 | |
| *     permute the magnitudes of A above so they're in the same order as
 | |
| *     the factor.
 | |
| *
 | |
| *     The iteration orders and permutations were copied from ssytrs.
 | |
| *     Calls to SSWAP would be severe overkill.
 | |
| *
 | |
|       IF ( UPPER ) THEN
 | |
|          K = N
 | |
|          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
 | |
|             IF ( IPIV( K ).GT.0 ) THEN
 | |
| !              1x1 pivot
 | |
|                KP = IPIV( K )
 | |
|                IF ( KP .NE. K ) THEN
 | |
|                   TMP = WORK( N+K )
 | |
|                   WORK( N+K ) = WORK( N+KP )
 | |
|                   WORK( N+KP ) = TMP
 | |
|                END IF
 | |
|                DO I = 1, K
 | |
|                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | |
|                END DO
 | |
|                K = K - 1
 | |
|             ELSE
 | |
| !              2x2 pivot
 | |
|                KP = -IPIV( K )
 | |
|                TMP = WORK( N+K-1 )
 | |
|                WORK( N+K-1 ) = WORK( N+KP )
 | |
|                WORK( N+KP ) = TMP
 | |
|                DO I = 1, K-1
 | |
|                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | |
|                   WORK( K-1 ) = MAX( ABS( AF( I, K-1 ) ), WORK( K-1 ) )
 | |
|                END DO
 | |
|                WORK( K ) = MAX( ABS( AF( K, K ) ), WORK( K ) )
 | |
|                K = K - 2
 | |
|             END IF
 | |
|          END DO
 | |
|          K = NCOLS
 | |
|          DO WHILE ( K .LE. N )
 | |
|             IF ( IPIV( K ).GT.0 ) THEN
 | |
|                KP = IPIV( K )
 | |
|                IF ( KP .NE. K ) THEN
 | |
|                   TMP = WORK( N+K )
 | |
|                   WORK( N+K ) = WORK( N+KP )
 | |
|                   WORK( N+KP ) = TMP
 | |
|                END IF
 | |
|                K = K + 1
 | |
|             ELSE
 | |
|                KP = -IPIV( K )
 | |
|                TMP = WORK( N+K )
 | |
|                WORK( N+K ) = WORK( N+KP )
 | |
|                WORK( N+KP ) = TMP
 | |
|                K = K + 2
 | |
|             END IF
 | |
|          END DO
 | |
|       ELSE
 | |
|          K = 1
 | |
|          DO WHILE ( K .LE. NCOLS )
 | |
|             IF ( IPIV( K ).GT.0 ) THEN
 | |
| !              1x1 pivot
 | |
|                KP = IPIV( K )
 | |
|                IF ( KP .NE. K ) THEN
 | |
|                   TMP = WORK( N+K )
 | |
|                   WORK( N+K ) = WORK( N+KP )
 | |
|                   WORK( N+KP ) = TMP
 | |
|                END IF
 | |
|                DO I = K, N
 | |
|                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | |
|                END DO
 | |
|                K = K + 1
 | |
|             ELSE
 | |
| !              2x2 pivot
 | |
|                KP = -IPIV( K )
 | |
|                TMP = WORK( N+K+1 )
 | |
|                WORK( N+K+1 ) = WORK( N+KP )
 | |
|                WORK( N+KP ) = TMP
 | |
|                DO I = K+1, N
 | |
|                   WORK( K ) = MAX( ABS( AF( I, K ) ), WORK( K ) )
 | |
|                   WORK( K+1 ) = MAX( ABS( AF(I, K+1 ) ), WORK( K+1 ) )
 | |
|                END DO
 | |
|                WORK( K ) = MAX( ABS( AF( K, K ) ), WORK( K ) )
 | |
|                K = K + 2
 | |
|             END IF
 | |
|          END DO
 | |
|          K = NCOLS
 | |
|          DO WHILE ( K .GE. 1 )
 | |
|             IF ( IPIV( K ).GT.0 ) THEN
 | |
|                KP = IPIV( K )
 | |
|                IF ( KP .NE. K ) THEN
 | |
|                   TMP = WORK( N+K )
 | |
|                   WORK( N+K ) = WORK( N+KP )
 | |
|                   WORK( N+KP ) = TMP
 | |
|                END IF
 | |
|                K = K - 1
 | |
|             ELSE
 | |
|                KP = -IPIV( K )
 | |
|                TMP = WORK( N+K )
 | |
|                WORK( N+K ) = WORK( N+KP )
 | |
|                WORK( N+KP ) = TMP
 | |
|                K = K - 2
 | |
|             ENDIF
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Compute the *inverse* of the max element growth factor.  Dividing
 | |
| *     by zero would imply the largest entry of the factor's column is
 | |
| *     zero.  Than can happen when either the column of A is zero or
 | |
| *     massive pivots made the factor underflow to zero.  Neither counts
 | |
| *     as growth in itself, so simply ignore terms with zero
 | |
| *     denominators.
 | |
| *
 | |
|       IF ( UPPER ) THEN
 | |
|          DO I = NCOLS, N
 | |
|             UMAX = WORK( I )
 | |
|             AMAX = WORK( N+I )
 | |
|             IF ( UMAX /= 0.0 ) THEN
 | |
|                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | |
|             END IF
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO I = 1, NCOLS
 | |
|             UMAX = WORK( I )
 | |
|             AMAX = WORK( N+I )
 | |
|             IF ( UMAX /= 0.0 ) THEN
 | |
|                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
 | |
|             END IF
 | |
|          END DO
 | |
|       END IF
 | |
| 
 | |
|       SLA_SYRPVGRW = RPVGRW
 | |
|       END
 |