251 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZQLT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
 | |
| *                          RWORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RESULT( * ), RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), AF( LDA, * ), L( LDA, * ),
 | |
| *      $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n
 | |
| *> matrix A, and partially tests ZUNGQL which forms the m-by-m
 | |
| *> orthogonal matrix Q.
 | |
| *>
 | |
| *> ZQLT01 compares L with Q'*A, and checks that Q is orthogonal.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The m-by-n matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          Details of the QL factorization of A, as returned by ZGEQLF.
 | |
| *>          See ZGEQLF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX*16 array, dimension (LDA,M)
 | |
| *>          The m-by-m orthogonal matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] L
 | |
| *> \verbatim
 | |
| *>          L is COMPLEX*16 array, dimension (LDA,max(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A, AF, Q and R.
 | |
| *>          LDA >= max(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX*16 array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors, as returned
 | |
| *>          by ZGEQLF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The test ratios:
 | |
| *>          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
 | |
| *>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
 | |
|      $                   RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RESULT( * ), RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), AF( LDA, * ), L( LDA, * ),
 | |
|      $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         ROGUE
 | |
|       PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            INFO, MINMN
 | |
|       DOUBLE PRECISION   ANORM, EPS, RESID
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
 | |
|       EXTERNAL           DLAMCH, ZLANGE, ZLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMM, ZGEQLF, ZHERK, ZLACPY, ZLASET, ZUNGQL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, DCMPLX, MAX, MIN
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       CHARACTER*32       SRNAMT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       MINMN = MIN( M, N )
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Copy the matrix A to the array AF.
 | |
| *
 | |
|       CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
 | |
| *
 | |
| *     Factorize the matrix A in the array AF.
 | |
| *
 | |
|       SRNAMT = 'ZGEQLF'
 | |
|       CALL ZGEQLF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *     Copy details of Q
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
 | |
|       IF( M.GE.N ) THEN
 | |
|          IF( N.LT.M .AND. N.GT.0 )
 | |
|      $      CALL ZLACPY( 'Full', M-N, N, AF, LDA, Q( 1, M-N+1 ), LDA )
 | |
|          IF( N.GT.1 )
 | |
|      $      CALL ZLACPY( 'Upper', N-1, N-1, AF( M-N+1, 2 ), LDA,
 | |
|      $                   Q( M-N+1, M-N+2 ), LDA )
 | |
|       ELSE
 | |
|          IF( M.GT.1 )
 | |
|      $      CALL ZLACPY( 'Upper', M-1, M-1, AF( 1, N-M+2 ), LDA,
 | |
|      $                   Q( 1, 2 ), LDA )
 | |
|       END IF
 | |
| *
 | |
| *     Generate the m-by-m matrix Q
 | |
| *
 | |
|       SRNAMT = 'ZUNGQL'
 | |
|       CALL ZUNGQL( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *     Copy L
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), L,
 | |
|      $             LDA )
 | |
|       IF( M.GE.N ) THEN
 | |
|          IF( N.GT.0 )
 | |
|      $      CALL ZLACPY( 'Lower', N, N, AF( M-N+1, 1 ), LDA,
 | |
|      $                   L( M-N+1, 1 ), LDA )
 | |
|       ELSE
 | |
|          IF( N.GT.M .AND. M.GT.0 )
 | |
|      $      CALL ZLACPY( 'Full', M, N-M, AF, LDA, L, LDA )
 | |
|          IF( M.GT.0 )
 | |
|      $      CALL ZLACPY( 'Lower', M, M, AF( 1, N-M+1 ), LDA,
 | |
|      $                   L( 1, N-M+1 ), LDA )
 | |
|       END IF
 | |
| *
 | |
| *     Compute L - Q'*A
 | |
| *
 | |
|       CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M,
 | |
|      $            DCMPLX( -ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), L,
 | |
|      $            LDA )
 | |
| *
 | |
| *     Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
 | |
| *
 | |
|       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
 | |
|       RESID = ZLANGE( '1', M, N, L, LDA, RWORK )
 | |
|       IF( ANORM.GT.ZERO ) THEN
 | |
|          RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
 | |
|       ELSE
 | |
|          RESULT( 1 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Compute I - Q'*Q
 | |
| *
 | |
|       CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), L, LDA )
 | |
|       CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA,
 | |
|      $            ONE, L, LDA )
 | |
| *
 | |
| *     Compute norm( I - Q'*Q ) / ( M * EPS ) .
 | |
| *
 | |
|       RESID = ZLANSY( '1', 'Upper', M, L, LDA, RWORK )
 | |
| *
 | |
|       RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZQLT01
 | |
| *
 | |
|       END
 |