262 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHET01_3
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHET01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
 | |
| *                            LDC, RWORK, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            LDA, LDAFAC, LDC, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
 | |
| *                          E( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHET01_3 reconstructs a Hermitian indefinite matrix A from its
 | |
| *> block L*D*L' or U*D*U' factorization computed by ZHETRF_RK
 | |
| *> (or ZHETRF_BK) and computes the residual
 | |
| *>    norm( C - A ) / ( N * norm(A) * EPS ),
 | |
| *> where C is the reconstructed matrix and EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows and columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The original Hermitian matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AFAC
 | |
| *> \verbatim
 | |
| *>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
 | |
| *>          Diagonal of the block diagonal matrix D and factors U or L
 | |
| *>          as computed by ZHETRF_RK and ZHETRF_BK:
 | |
| *>            a) ONLY diagonal elements of the Hermitian block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                should be provided on entry in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAFAC
 | |
| *> \verbatim
 | |
| *>          LDAFAC is INTEGER
 | |
| *>          The leading dimension of the array AFAC.
 | |
| *>          LDAFAC >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX*16 array, dimension (N)
 | |
| *>          On entry, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the Hermitian block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices from ZHETRF_RK (or ZHETRF_BK).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension (LDC,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C.  LDC >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
 | |
| *>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHET01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
 | |
|      $                     LDC, RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            LDA, LDAFAC, LDC, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
 | |
|      $                   E( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J
 | |
|       DOUBLE PRECISION   ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   ZLANHE, DLAMCH
 | |
|       EXTERNAL           LSAME, ZLANHE, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASET, ZLAVHE_ROOK, ZSYCONVF_ROOK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DIMAG, DBLE
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick exit if N = 0.
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     a) Revert to multipliers of L
 | |
| *
 | |
|       CALL ZSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
 | |
| *
 | |
| *     1) Determine EPS and the norm of A.
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
 | |
| *
 | |
| *     Check the imaginary parts of the diagonal elements and return with
 | |
| *     an error code if any are nonzero.
 | |
| *
 | |
|       DO J = 1, N
 | |
|          IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
 | |
|             RESID = ONE / EPS
 | |
|             RETURN
 | |
|          END IF
 | |
|       END DO
 | |
| *
 | |
| *     2) Initialize C to the identity matrix.
 | |
| *
 | |
|       CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
 | |
| *
 | |
| *     3) Call ZLAVHE_ROOK to form the product D * U' (or D * L' ).
 | |
| *
 | |
|       CALL ZLAVHE_ROOK( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC,
 | |
|      $                  LDAFAC, IPIV, C, LDC, INFO )
 | |
| *
 | |
| *     4) Call ZLAVHE_RK again to multiply by U (or L ).
 | |
| *
 | |
|       CALL ZLAVHE_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
 | |
|      $                  LDAFAC, IPIV, C, LDC, INFO )
 | |
| *
 | |
| *     5) Compute the difference  C - A .
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|          DO J = 1, N
 | |
|             DO I = 1, J - 1
 | |
|                C( I, J ) = C( I, J ) - A( I, J )
 | |
|             END DO
 | |
|             C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
 | |
|          END DO
 | |
|       ELSE
 | |
|          DO J = 1, N
 | |
|             C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
 | |
|             DO I = J + 1, N
 | |
|                C( I, J ) = C( I, J ) - A( I, J )
 | |
|             END DO
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     6) Compute norm( C - A ) / ( N * norm(A) * EPS )
 | |
| *
 | |
|       RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          RESID = ( ( RESID/DBLE( N ) )/ANORM ) / EPS
 | |
|       END IF
 | |
| *
 | |
| *     b) Convert to factor of L (or U)
 | |
| *
 | |
|       CALL ZSYCONVF_ROOK( UPLO, 'C', N, AFAC, LDAFAC, E, IPIV, INFO )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHET01_3
 | |
| *
 | |
|       END
 |