233 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGLMTS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
 | |
| *                          X, U, WORK, LWORK, RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *       REAL               RESULT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | |
| *      $                   BF( LDB, * ), RWORK( * ), D( * ), DF( * ),
 | |
| *      $                   U( * ), WORK( LWORK ), X( * )
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGLMTS tests SGGGLM - a subroutine for solving the generalized
 | |
| *> linear model problem.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of columns of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,M)
 | |
| *>          The N-by-M matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is REAL array, dimension (LDA,M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A, AF. LDA >= max(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,P)
 | |
| *>          The N-by-P matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BF
 | |
| *> \verbatim
 | |
| *>          BF is REAL array, dimension (LDB,P)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the arrays B, BF. LDB >= max(P,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension( N )
 | |
| *>          On input, the left hand side of the GLM.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DF
 | |
| *> \verbatim
 | |
| *>          DF is REAL array, dimension( N )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension( M )
 | |
| *>          solution vector X in the GLM problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension( P )
 | |
| *>          solution vector U in the GLM problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL
 | |
| *>          The test ratio:
 | |
| *>                           norm( d - A*x - B*u )
 | |
| *>            RESULT = -----------------------------------------
 | |
| *>                     (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
 | |
|      $                   X, U, WORK, LWORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
|       REAL               RESULT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), AF( LDA, * ), B( LDB, * ),
 | |
|      $                   BF( LDB, * ), RWORK( * ), D( * ), DF( * ),
 | |
|      $                   U( * ), WORK( LWORK ), X( * )
 | |
| *
 | |
| *  ====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            INFO
 | |
|       REAL               ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SASUM, SLAMCH, SLANGE
 | |
|       EXTERNAL           SASUM, SLAMCH, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLACPY
 | |
| *
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       ANORM = MAX( SLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
 | |
|       BNORM = MAX( SLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
 | |
| *
 | |
| *     Copy the matrices A and B to the arrays AF and BF,
 | |
| *     and the vector D the array DF.
 | |
| *
 | |
|       CALL SLACPY( 'Full', N, M, A, LDA, AF, LDA )
 | |
|       CALL SLACPY( 'Full', N, P, B, LDB, BF, LDB )
 | |
|       CALL SCOPY( N, D, 1, DF, 1 )
 | |
| *
 | |
| *     Solve GLM problem
 | |
| *
 | |
|       CALL SGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
 | |
|      $             INFO )
 | |
| *
 | |
| *     Test the residual for the solution of LSE
 | |
| *
 | |
| *                       norm( d - A*x - B*u )
 | |
| *       RESULT = -----------------------------------------
 | |
| *                (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
 | |
| *
 | |
|       CALL SCOPY( N, D, 1, DF, 1 )
 | |
|       CALL SGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1,
 | |
|      $             ONE, DF, 1 )
 | |
| *
 | |
|       CALL SGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1,
 | |
|      $             ONE, DF, 1 )
 | |
| *
 | |
|       DNORM = SASUM( N, DF, 1 )
 | |
|       XNORM = SASUM( M, X, 1 ) + SASUM( P, U, 1 )
 | |
|       YNORM = ANORM + BNORM
 | |
| *
 | |
|       IF( XNORM.LE.ZERO ) THEN
 | |
|          RESULT = ZERO
 | |
|       ELSE
 | |
|          RESULT =  ( ( DNORM / YNORM ) / XNORM ) /EPS
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGLMTS
 | |
| *
 | |
|       END
 |