294 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SORMHR
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SORMHR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormhr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormhr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormhr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
 | 
						|
*                          LDC, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          SIDE, TRANS
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDA, LDC, LWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SORMHR overwrites the general real M-by-N matrix C with
 | 
						|
*>
 | 
						|
*>                 SIDE = 'L'     SIDE = 'R'
 | 
						|
*> TRANS = 'N':      Q * C          C * Q
 | 
						|
*> TRANS = 'T':      Q**T * C       C * Q**T
 | 
						|
*>
 | 
						|
*> where Q is a real orthogonal matrix of order nq, with nq = m if
 | 
						|
*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
 | 
						|
*> IHI-ILO elementary reflectors, as returned by SGEHRD:
 | 
						|
*>
 | 
						|
*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': apply Q or Q**T from the Left;
 | 
						|
*>          = 'R': apply Q or Q**T from the Right.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N':  No transpose, apply Q;
 | 
						|
*>          = 'T':  Transpose, apply Q**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>
 | 
						|
*>          ILO and IHI must have the same values as in the previous call
 | 
						|
*>          of SGEHRD. Q is equal to the unit matrix except in the
 | 
						|
*>          submatrix Q(ilo+1:ihi,ilo+1:ihi).
 | 
						|
*>          If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
 | 
						|
*>          ILO = 1 and IHI = 0, if M = 0;
 | 
						|
*>          if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
 | 
						|
*>          ILO = 1 and IHI = 0, if N = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension
 | 
						|
*>                               (LDA,M) if SIDE = 'L'
 | 
						|
*>                               (LDA,N) if SIDE = 'R'
 | 
						|
*>          The vectors which define the elementary reflectors, as
 | 
						|
*>          returned by SGEHRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.
 | 
						|
*>          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension
 | 
						|
*>                               (M-1) if SIDE = 'L'
 | 
						|
*>                               (N-1) if SIDE = 'R'
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by SGEHRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If SIDE = 'L', LWORK >= max(1,N);
 | 
						|
*>          if SIDE = 'R', LWORK >= max(1,M).
 | 
						|
*>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
 | 
						|
*>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
 | 
						|
*>          blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
 | 
						|
     $                   LDC, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          SIDE, TRANS
 | 
						|
      INTEGER            IHI, ILO, INFO, LDA, LDC, LWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LEFT, LQUERY
 | 
						|
      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NH, NI, NQ, NW
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SORMQR, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NH = IHI - ILO
 | 
						|
      LEFT = LSAME( SIDE, 'L' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
*     NQ is the order of Q and NW is the minimum dimension of WORK
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         NQ = M
 | 
						|
         NW = MAX( 1, N )
 | 
						|
      ELSE
 | 
						|
         NQ = N
 | 
						|
         NW = MAX( 1, M )
 | 
						|
      END IF
 | 
						|
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, NQ ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( IHI.LT.MIN( ILO, NQ ) .OR. IHI.GT.NQ ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -13
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( LEFT ) THEN
 | 
						|
            NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, NH, N, NH, -1 )
 | 
						|
         ELSE
 | 
						|
            NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, NH, NH, -1 )
 | 
						|
         END IF
 | 
						|
         LWKOPT = NW*NB
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SORMHR', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 .OR. NH.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = 1
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         MI = NH
 | 
						|
         NI = N
 | 
						|
         I1 = ILO + 1
 | 
						|
         I2 = 1
 | 
						|
      ELSE
 | 
						|
         MI = M
 | 
						|
         NI = NH
 | 
						|
         I1 = 1
 | 
						|
         I2 = ILO + 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL SORMQR( SIDE, TRANS, MI, NI, NH, A( ILO+1, ILO ), LDA,
 | 
						|
     $             TAU( ILO ), C( I1, I2 ), LDC, WORK, LWORK, IINFO )
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SORMHR
 | 
						|
*
 | 
						|
      END
 |