312 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAUNHR_COL_GETRFNP2
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAUNHR_COL_GETRFNP2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claunhr_col_getrfnp2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claunhr_col_getrfnp2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claunhr_col_getrfnp2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       RECURSIVE SUBROUTINE CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), D( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
 | 
						|
*> pivoting of a complex general M-by-N matrix A. The factorization has
 | 
						|
*> the form:
 | 
						|
*>
 | 
						|
*>     A - S = L * U,
 | 
						|
*>
 | 
						|
*> where:
 | 
						|
*>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
 | 
						|
*>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
 | 
						|
*>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
 | 
						|
*>    i-1 steps of Gaussian elimination. This means that the diagonal
 | 
						|
*>    element at each step of "modified" Gaussian elimination is at
 | 
						|
*>    least one in absolute value (so that division-by-zero not
 | 
						|
*>    possible during the division by the diagonal element);
 | 
						|
*>
 | 
						|
*>    L is a M-by-N lower triangular matrix with unit diagonal elements
 | 
						|
*>    (lower trapezoidal if M > N);
 | 
						|
*>
 | 
						|
*>    and U is a M-by-N upper triangular matrix
 | 
						|
*>    (upper trapezoidal if M < N).
 | 
						|
*>
 | 
						|
*> This routine is an auxiliary routine used in the Householder
 | 
						|
*> reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is
 | 
						|
*> applied to an M-by-N matrix A with orthonormal columns, where each
 | 
						|
*> element is bounded by one in absolute value. With the choice of
 | 
						|
*> the matrix S above, one can show that the diagonal element at each
 | 
						|
*> step of Gaussian elimination is the largest (in absolute value) in
 | 
						|
*> the column on or below the diagonal, so that no pivoting is required
 | 
						|
*> for numerical stability [1].
 | 
						|
*>
 | 
						|
*> For more details on the Householder reconstruction algorithm,
 | 
						|
*> including the modified LU factorization, see [1].
 | 
						|
*>
 | 
						|
*> This is the recursive version of the LU factorization algorithm.
 | 
						|
*> Denote A - S by B. The algorithm divides the matrix B into four
 | 
						|
*> submatrices:
 | 
						|
*>
 | 
						|
*>        [  B11 | B12  ]  where B11 is n1 by n1,
 | 
						|
*>    B = [ -----|----- ]        B21 is (m-n1) by n1,
 | 
						|
*>        [  B21 | B22  ]        B12 is n1 by n2,
 | 
						|
*>                               B22 is (m-n1) by n2,
 | 
						|
*>                               with n1 = min(m,n)/2, n2 = n-n1.
 | 
						|
*>
 | 
						|
*>
 | 
						|
*> The subroutine calls itself to factor B11, solves for B21,
 | 
						|
*> solves for B12, updates B22, then calls itself to factor B22.
 | 
						|
*>
 | 
						|
*> For more details on the recursive LU algorithm, see [2].
 | 
						|
*>
 | 
						|
*> CLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
 | 
						|
*> routine CLAUNHR_COL_GETRFNP, which uses blocked code calling
 | 
						|
*> Level 3 BLAS to update the submatrix. However, CLAUNHR_COL_GETRFNP2
 | 
						|
*> is self-sufficient and can be used without CLAUNHR_COL_GETRFNP.
 | 
						|
*>
 | 
						|
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
 | 
						|
*>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
 | 
						|
*>     E. Solomonik, J. Parallel Distrib. Comput.,
 | 
						|
*>     vol. 85, pp. 3-31, 2015.
 | 
						|
*>
 | 
						|
*> [2] "Recursion leads to automatic variable blocking for dense linear
 | 
						|
*>     algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
 | 
						|
*>     vol. 41, no. 6, pp. 737-755, 1997.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix to be factored.
 | 
						|
*>          On exit, the factors L and U from the factorization
 | 
						|
*>          A-S=L*U; the unit diagonal elements of L are not stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX array, dimension min(M,N)
 | 
						|
*>          The diagonal elements of the diagonal M-by-N sign matrix S,
 | 
						|
*>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
 | 
						|
*>          only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> November 2019, Igor Kozachenko,
 | 
						|
*>                Computer Science Division,
 | 
						|
*>                University of California, Berkeley
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      RECURSIVE SUBROUTINE CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX         A( LDA, * ), D( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               SFMIN
 | 
						|
      INTEGER            I, IINFO, N1, N2
 | 
						|
      COMPLEX            Z
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CSCAL, CTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, REAL, CMPLX, AIMAG, SIGN, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLAUNHR_COL_GETRFNP2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N ).EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
 | 
						|
      IF ( M.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        One row case, (also recursion termination case),
 | 
						|
*        use unblocked code
 | 
						|
*
 | 
						|
*        Transfer the sign
 | 
						|
*
 | 
						|
         D( 1 ) = CMPLX( -SIGN( ONE, REAL( A( 1, 1 ) ) ) )
 | 
						|
*
 | 
						|
*        Construct the row of U
 | 
						|
*
 | 
						|
         A( 1, 1 ) = A( 1, 1 ) - D( 1 )
 | 
						|
*
 | 
						|
      ELSE IF( N.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        One column case, (also recursion termination case),
 | 
						|
*        use unblocked code
 | 
						|
*
 | 
						|
*        Transfer the sign
 | 
						|
*
 | 
						|
         D( 1 ) = CMPLX( -SIGN( ONE, REAL( A( 1, 1 ) ) ) )
 | 
						|
*
 | 
						|
*        Construct the row of U
 | 
						|
*
 | 
						|
         A( 1, 1 ) = A( 1, 1 ) - D( 1 )
 | 
						|
*
 | 
						|
*        Scale the elements 2:M of the column
 | 
						|
*
 | 
						|
*        Determine machine safe minimum
 | 
						|
*
 | 
						|
         SFMIN = SLAMCH('S')
 | 
						|
*
 | 
						|
*        Construct the subdiagonal elements of L
 | 
						|
*
 | 
						|
         IF( CABS1( A( 1, 1 ) ) .GE. SFMIN ) THEN
 | 
						|
            CALL CSCAL( M-1, CONE / A( 1, 1 ), A( 2, 1 ), 1 )
 | 
						|
         ELSE
 | 
						|
            DO I = 2, M
 | 
						|
               A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Divide the matrix B into four submatrices
 | 
						|
*
 | 
						|
         N1 = MIN( M, N ) / 2
 | 
						|
         N2 = N-N1
 | 
						|
 | 
						|
*
 | 
						|
*        Factor B11, recursive call
 | 
						|
*
 | 
						|
         CALL CLAUNHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
 | 
						|
*
 | 
						|
*        Solve for B21
 | 
						|
*
 | 
						|
         CALL CTRSM( 'R', 'U', 'N', 'N', M-N1, N1, CONE, A, LDA,
 | 
						|
     $               A( N1+1, 1 ), LDA )
 | 
						|
*
 | 
						|
*        Solve for B12
 | 
						|
*
 | 
						|
         CALL CTRSM( 'L', 'L', 'N', 'U', N1, N2, CONE, A, LDA,
 | 
						|
     $               A( 1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
*        Update B22, i.e. compute the Schur complement
 | 
						|
*        B22 := B22 - B21*B12
 | 
						|
*
 | 
						|
         CALL CGEMM( 'N', 'N', M-N1, N2, N1, -CONE, A( N1+1, 1 ), LDA,
 | 
						|
     $               A( 1, N1+1 ), LDA, CONE, A( N1+1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
*        Factor B22, recursive call
 | 
						|
*
 | 
						|
         CALL CLAUNHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
 | 
						|
     $                              D( N1+1 ), IINFO )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAUNHR_COL_GETRFNP2
 | 
						|
*
 | 
						|
      END
 |