202 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZUNG2R
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZUNG2R + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zung2r.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zung2r.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zung2r.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZUNG2R( M, N, K, A, LDA, TAU, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, K, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZUNG2R generates an m by n complex matrix Q with orthonormal columns,
 | 
						|
*> which is defined as the first n columns of a product of k elementary
 | 
						|
*> reflectors of order m
 | 
						|
*>
 | 
						|
*>       Q  =  H(1) H(2) . . . H(k)
 | 
						|
*>
 | 
						|
*> as returned by ZGEQRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix Q. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix Q. M >= N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines the
 | 
						|
*>          matrix Q. N >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          On entry, the i-th column must contain the vector which
 | 
						|
*>          defines the elementary reflector H(i), for i = 1,2,...,k, as
 | 
						|
*>          returned by ZGEQRF in the first k columns of its array
 | 
						|
*>          argument A.
 | 
						|
*>          On exit, the m by n matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The first dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX*16 array, dimension (K)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by ZGEQRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument has an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZUNG2R( M, N, K, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, K, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
 | 
						|
     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, L
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZLARF, ZSCAL
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZUNG2R', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Initialise columns k+1:n to columns of the unit matrix
 | 
						|
*
 | 
						|
      DO 20 J = K + 1, N
 | 
						|
         DO 10 L = 1, M
 | 
						|
            A( L, J ) = ZERO
 | 
						|
   10    CONTINUE
 | 
						|
         A( J, J ) = ONE
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      DO 40 I = K, 1, -1
 | 
						|
*
 | 
						|
*        Apply H(i) to A(i:m,i:n) from the left
 | 
						|
*
 | 
						|
         IF( I.LT.N ) THEN
 | 
						|
            A( I, I ) = ONE
 | 
						|
            CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
 | 
						|
     $                  A( I, I+1 ), LDA, WORK )
 | 
						|
         END IF
 | 
						|
         IF( I.LT.M )
 | 
						|
     $      CALL ZSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
 | 
						|
         A( I, I ) = ONE - TAU( I )
 | 
						|
*
 | 
						|
*        Set A(1:i-1,i) to zero
 | 
						|
*
 | 
						|
         DO 30 L = 1, I - 1
 | 
						|
            A( L, I ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZUNG2R
 | 
						|
*
 | 
						|
      END
 |