259 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLANHE + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM, UPLO
 | 
						|
*       INTEGER            LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   WORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLANHE  returns the value of the one norm,  or the Frobenius norm, or
 | 
						|
*> the  infinity norm,  or the  element of  largest absolute value  of a
 | 
						|
*> complex hermitian matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \return ZLANHE
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | 
						|
*>             (
 | 
						|
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | 
						|
*>             (
 | 
						|
*>             ( normI(A),         NORM = 'I' or 'i'
 | 
						|
*>             (
 | 
						|
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | 
						|
*>
 | 
						|
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | 
						|
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | 
						|
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | 
						|
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies the value to be returned in ZLANHE as described
 | 
						|
*>          above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          hermitian matrix A is to be referenced.
 | 
						|
*>          = 'U':  Upper triangular part of A is referenced
 | 
						|
*>          = 'L':  Lower triangular part of A is referenced
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is
 | 
						|
*>          set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The hermitian matrix A.  If UPLO = 'U', the leading n by n
 | 
						|
*>          upper triangular part of A contains the upper triangular part
 | 
						|
*>          of the matrix A, and the strictly lower triangular part of A
 | 
						|
*>          is not referenced.  If UPLO = 'L', the leading n by n lower
 | 
						|
*>          triangular part of A contains the lower triangular part of
 | 
						|
*>          the matrix A, and the strictly upper triangular part of A is
 | 
						|
*>          not referenced. Note that the imaginary parts of the diagonal
 | 
						|
*>          elements need not be set and are assumed to be zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(N,1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | 
						|
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 | 
						|
*>          WORK is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16HEauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM, UPLO
 | 
						|
      INTEGER            LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   WORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME, DISNAN
 | 
						|
      EXTERNAL           LSAME, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLASSQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         VALUE = ZERO
 | 
						|
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | 
						|
*
 | 
						|
*        Find max(abs(A(i,j))).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 20 J = 1, N
 | 
						|
               DO 10 I = 1, J - 1
 | 
						|
                  SUM = ABS( A( I, J ) )
 | 
						|
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   10          CONTINUE
 | 
						|
               SUM = ABS( DBLE( A( J, J ) ) )
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 40 J = 1, N
 | 
						|
               SUM = ABS( DBLE( A( J, J ) ) )
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
               DO 30 I = J + 1, N
 | 
						|
                  SUM = ABS( A( I, J ) )
 | 
						|
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
 | 
						|
     $         ( NORM.EQ.'1' ) ) THEN
 | 
						|
*
 | 
						|
*        Find normI(A) ( = norm1(A), since A is hermitian).
 | 
						|
*
 | 
						|
         VALUE = ZERO
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 60 J = 1, N
 | 
						|
               SUM = ZERO
 | 
						|
               DO 50 I = 1, J - 1
 | 
						|
                  ABSA = ABS( A( I, J ) )
 | 
						|
                  SUM = SUM + ABSA
 | 
						|
                  WORK( I ) = WORK( I ) + ABSA
 | 
						|
   50          CONTINUE
 | 
						|
               WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) )
 | 
						|
   60       CONTINUE
 | 
						|
            DO 70 I = 1, N
 | 
						|
               SUM = WORK( I )
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
   70       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 80 I = 1, N
 | 
						|
               WORK( I ) = ZERO
 | 
						|
   80       CONTINUE
 | 
						|
            DO 100 J = 1, N
 | 
						|
               SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) )
 | 
						|
               DO 90 I = J + 1, N
 | 
						|
                  ABSA = ABS( A( I, J ) )
 | 
						|
                  SUM = SUM + ABSA
 | 
						|
                  WORK( I ) = WORK( I ) + ABSA
 | 
						|
   90          CONTINUE
 | 
						|
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | 
						|
  100       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | 
						|
*
 | 
						|
*        Find normF(A).
 | 
						|
*
 | 
						|
         SCALE = ZERO
 | 
						|
         SUM = ONE
 | 
						|
         IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
            DO 110 J = 2, N
 | 
						|
               CALL ZLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
 | 
						|
  110       CONTINUE
 | 
						|
         ELSE
 | 
						|
            DO 120 J = 1, N - 1
 | 
						|
               CALL ZLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
         SUM = 2*SUM
 | 
						|
         DO 130 I = 1, N
 | 
						|
            IF( DBLE( A( I, I ) ).NE.ZERO ) THEN
 | 
						|
               ABSA = ABS( DBLE( A( I, I ) ) )
 | 
						|
               IF( SCALE.LT.ABSA ) THEN
 | 
						|
                  SUM = ONE + SUM*( SCALE / ABSA )**2
 | 
						|
                  SCALE = ABSA
 | 
						|
               ELSE
 | 
						|
                  SUM = SUM + ( ABSA / SCALE )**2
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
  130    CONTINUE
 | 
						|
         VALUE = SCALE*SQRT( SUM )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      ZLANHE = VALUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLANHE
 | 
						|
*
 | 
						|
      END
 |