354 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLAED3 used by sstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLAED3 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed3.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed3.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed3.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
 | 
						|
*                          CTOT, W, S, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, K, LDQ, N, N1
 | 
						|
*       REAL               RHO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            CTOT( * ), INDX( * )
 | 
						|
*       REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
 | 
						|
*      $                   S( * ), W( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLAED3 finds the roots of the secular equation, as defined by the
 | 
						|
*> values in D, W, and RHO, between 1 and K.  It makes the
 | 
						|
*> appropriate calls to SLAED4 and then updates the eigenvectors by
 | 
						|
*> multiplying the matrix of eigenvectors of the pair of eigensystems
 | 
						|
*> being combined by the matrix of eigenvectors of the K-by-K system
 | 
						|
*> which is solved here.
 | 
						|
*>
 | 
						|
*> This code makes very mild assumptions about floating point
 | 
						|
*> arithmetic. It will work on machines with a guard digit in
 | 
						|
*> add/subtract, or on those binary machines without guard digits
 | 
						|
*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
 | 
						|
*> It could conceivably fail on hexadecimal or decimal machines
 | 
						|
*> without guard digits, but we know of none.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of terms in the rational function to be solved by
 | 
						|
*>          SLAED4.  K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns in the Q matrix.
 | 
						|
*>          N >= K (deflation may result in N>K).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N1
 | 
						|
*> \verbatim
 | 
						|
*>          N1 is INTEGER
 | 
						|
*>          The location of the last eigenvalue in the leading submatrix.
 | 
						|
*>          min(1,N) <= N1 <= N/2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          D(I) contains the updated eigenvalues for
 | 
						|
*>          1 <= I <= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDQ,N)
 | 
						|
*>          Initially the first K columns are used as workspace.
 | 
						|
*>          On output the columns 1 to K contain
 | 
						|
*>          the updated eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RHO
 | 
						|
*> \verbatim
 | 
						|
*>          RHO is REAL
 | 
						|
*>          The value of the parameter in the rank one update equation.
 | 
						|
*>          RHO >= 0 required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] DLAMDA
 | 
						|
*> \verbatim
 | 
						|
*>          DLAMDA is REAL array, dimension (K)
 | 
						|
*>          The first K elements of this array contain the old roots
 | 
						|
*>          of the deflated updating problem.  These are the poles
 | 
						|
*>          of the secular equation. May be changed on output by
 | 
						|
*>          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
 | 
						|
*>          Cray-2, or Cray C-90, as described above.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Q2
 | 
						|
*> \verbatim
 | 
						|
*>          Q2 is REAL array, dimension (LDQ2, N)
 | 
						|
*>          The first K columns of this matrix contain the non-deflated
 | 
						|
*>          eigenvectors for the split problem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INDX
 | 
						|
*> \verbatim
 | 
						|
*>          INDX is INTEGER array, dimension (N)
 | 
						|
*>          The permutation used to arrange the columns of the deflated
 | 
						|
*>          Q matrix into three groups (see SLAED2).
 | 
						|
*>          The rows of the eigenvectors found by SLAED4 must be likewise
 | 
						|
*>          permuted before the matrix multiply can take place.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CTOT
 | 
						|
*> \verbatim
 | 
						|
*>          CTOT is INTEGER array, dimension (4)
 | 
						|
*>          A count of the total number of the various types of columns
 | 
						|
*>          in Q, as described in INDX.  The fourth column type is any
 | 
						|
*>          column which has been deflated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (K)
 | 
						|
*>          The first K elements of this array contain the components
 | 
						|
*>          of the deflation-adjusted updating vector. Destroyed on
 | 
						|
*>          output.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension (N1 + 1)*K
 | 
						|
*>          Will contain the eigenvectors of the repaired matrix which
 | 
						|
*>          will be multiplied by the previously accumulated eigenvectors
 | 
						|
*>          to update the system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = 1, an eigenvalue did not converge
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Jeff Rutter, Computer Science Division, University of California
 | 
						|
*> at Berkeley, USA \n
 | 
						|
*>  Modified by Francoise Tisseur, University of Tennessee
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
 | 
						|
     $                   CTOT, W, S, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, K, LDQ, N, N1
 | 
						|
      REAL               RHO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            CTOT( * ), INDX( * )
 | 
						|
      REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
 | 
						|
     $                   S( * ), W( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, II, IQ2, J, N12, N2, N23
 | 
						|
      REAL               TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMC3, SNRM2
 | 
						|
      EXTERNAL           SLAMC3, SNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLAED4, SLASET, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( K.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.K ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLAED3', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( K.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
 | 
						|
*     be computed with high relative accuracy (barring over/underflow).
 | 
						|
*     This is a problem on machines without a guard digit in
 | 
						|
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
 | 
						|
*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
 | 
						|
*     which on any of these machines zeros out the bottommost
 | 
						|
*     bit of DLAMDA(I) if it is 1; this makes the subsequent
 | 
						|
*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
 | 
						|
*     occurs. On binary machines with a guard digit (almost all
 | 
						|
*     machines) it does not change DLAMDA(I) at all. On hexadecimal
 | 
						|
*     and decimal machines with a guard digit, it slightly
 | 
						|
*     changes the bottommost bits of DLAMDA(I). It does not account
 | 
						|
*     for hexadecimal or decimal machines without guard digits
 | 
						|
*     (we know of none). We use a subroutine call to compute
 | 
						|
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
 | 
						|
*     this code.
 | 
						|
*
 | 
						|
      DO 10 I = 1, K
 | 
						|
         DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      DO 20 J = 1, K
 | 
						|
         CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
 | 
						|
*
 | 
						|
*        If the zero finder fails, the computation is terminated.
 | 
						|
*
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 120
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      IF( K.EQ.1 )
 | 
						|
     $   GO TO 110
 | 
						|
      IF( K.EQ.2 ) THEN
 | 
						|
         DO 30 J = 1, K
 | 
						|
            W( 1 ) = Q( 1, J )
 | 
						|
            W( 2 ) = Q( 2, J )
 | 
						|
            II = INDX( 1 )
 | 
						|
            Q( 1, J ) = W( II )
 | 
						|
            II = INDX( 2 )
 | 
						|
            Q( 2, J ) = W( II )
 | 
						|
   30    CONTINUE
 | 
						|
         GO TO 110
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute updated W.
 | 
						|
*
 | 
						|
      CALL SCOPY( K, W, 1, S, 1 )
 | 
						|
*
 | 
						|
*     Initialize W(I) = Q(I,I)
 | 
						|
*
 | 
						|
      CALL SCOPY( K, Q, LDQ+1, W, 1 )
 | 
						|
      DO 60 J = 1, K
 | 
						|
         DO 40 I = 1, J - 1
 | 
						|
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
 | 
						|
   40    CONTINUE
 | 
						|
         DO 50 I = J + 1, K
 | 
						|
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
 | 
						|
   50    CONTINUE
 | 
						|
   60 CONTINUE
 | 
						|
      DO 70 I = 1, K
 | 
						|
         W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
*     Compute eigenvectors of the modified rank-1 modification.
 | 
						|
*
 | 
						|
      DO 100 J = 1, K
 | 
						|
         DO 80 I = 1, K
 | 
						|
            S( I ) = W( I ) / Q( I, J )
 | 
						|
   80    CONTINUE
 | 
						|
         TEMP = SNRM2( K, S, 1 )
 | 
						|
         DO 90 I = 1, K
 | 
						|
            II = INDX( I )
 | 
						|
            Q( I, J ) = S( II ) / TEMP
 | 
						|
   90    CONTINUE
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
*     Compute the updated eigenvectors.
 | 
						|
*
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
      N2 = N - N1
 | 
						|
      N12 = CTOT( 1 ) + CTOT( 2 )
 | 
						|
      N23 = CTOT( 2 ) + CTOT( 3 )
 | 
						|
*
 | 
						|
      CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
 | 
						|
      IQ2 = N1*N12 + 1
 | 
						|
      IF( N23.NE.0 ) THEN
 | 
						|
         CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
 | 
						|
     $               ZERO, Q( N1+1, 1 ), LDQ )
 | 
						|
      ELSE
 | 
						|
         CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 )
 | 
						|
      IF( N12.NE.0 ) THEN
 | 
						|
         CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
 | 
						|
     $               LDQ )
 | 
						|
      ELSE
 | 
						|
         CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*
 | 
						|
  120 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLAED3
 | 
						|
*
 | 
						|
      END
 |