235 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CGETC2 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetc2.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetc2.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetc2.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGETC2( N, A, LDA, IPIV, JPIV, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * ), JPIV( * )
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGETC2 computes an LU factorization, using complete pivoting, of the
 | 
						|
*> n-by-n matrix A. The factorization has the form A = P * L * U * Q,
 | 
						|
*> where P and Q are permutation matrices, L is lower triangular with
 | 
						|
*> unit diagonal elements and U is upper triangular.
 | 
						|
*>
 | 
						|
*> This is a level 1 BLAS version of the algorithm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          On entry, the n-by-n matrix to be factored.
 | 
						|
*>          On exit, the factors L and U from the factorization
 | 
						|
*>          A = P*L*U*Q; the unit diagonal elements of L are not stored.
 | 
						|
*>          If U(k, k) appears to be less than SMIN, U(k, k) is given the
 | 
						|
*>          value of SMIN, giving a nonsingular perturbed system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1, N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N).
 | 
						|
*>          The pivot indices; for 1 <= i <= N, row i of the
 | 
						|
*>          matrix has been interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] JPIV
 | 
						|
*> \verbatim
 | 
						|
*>          JPIV is INTEGER array, dimension (N).
 | 
						|
*>          The pivot indices; for 1 <= j <= N, column j of the
 | 
						|
*>          matrix has been interchanged with column JPIV(j).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>           = 0: successful exit
 | 
						|
*>           > 0: if INFO = k, U(k, k) is likely to produce overflow if
 | 
						|
*>                one tries to solve for x in Ax = b. So U is perturbed
 | 
						|
*>                to avoid the overflow.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2013
 | 
						|
*
 | 
						|
*> \ingroup complexGEauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGETC2( N, A, LDA, IPIV, JPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.5.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2013
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * ), JPIV( * )
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IP, IPV, J, JP, JPV
 | 
						|
      REAL               BIGNUM, EPS, SMIN, SMLNUM, XMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGERU, CSWAP, SLABAD
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CMPLX, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set constants to control overflow
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SMLNUM = SLAMCH( 'S' ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Handle the case N=1 by itself
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IPIV( 1 ) = 1
 | 
						|
         JPIV( 1 ) = 1
 | 
						|
         IF( ABS( A( 1, 1 ) ).LT.SMLNUM ) THEN
 | 
						|
            INFO = 1
 | 
						|
            A( 1, 1 ) = CMPLX( SMLNUM, ZERO )
 | 
						|
         END IF
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Factorize A using complete pivoting.
 | 
						|
*     Set pivots less than SMIN to SMIN
 | 
						|
*
 | 
						|
      DO 40 I = 1, N - 1
 | 
						|
*
 | 
						|
*        Find max element in matrix A
 | 
						|
*
 | 
						|
         XMAX = ZERO
 | 
						|
         DO 20 IP = I, N
 | 
						|
            DO 10 JP = I, N
 | 
						|
               IF( ABS( A( IP, JP ) ).GE.XMAX ) THEN
 | 
						|
                  XMAX = ABS( A( IP, JP ) )
 | 
						|
                  IPV = IP
 | 
						|
                  JPV = JP
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
         IF( I.EQ.1 )
 | 
						|
     $      SMIN = MAX( EPS*XMAX, SMLNUM )
 | 
						|
*
 | 
						|
*        Swap rows
 | 
						|
*
 | 
						|
         IF( IPV.NE.I )
 | 
						|
     $      CALL CSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
 | 
						|
         IPIV( I ) = IPV
 | 
						|
*
 | 
						|
*        Swap columns
 | 
						|
*
 | 
						|
         IF( JPV.NE.I )
 | 
						|
     $      CALL CSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
 | 
						|
         JPIV( I ) = JPV
 | 
						|
*
 | 
						|
*        Check for singularity
 | 
						|
*
 | 
						|
         IF( ABS( A( I, I ) ).LT.SMIN ) THEN
 | 
						|
            INFO = I
 | 
						|
            A( I, I ) = CMPLX( SMIN, ZERO )
 | 
						|
         END IF
 | 
						|
         DO 30 J = I + 1, N
 | 
						|
            A( J, I ) = A( J, I ) / A( I, I )
 | 
						|
   30    CONTINUE
 | 
						|
         CALL CGERU( N-I, N-I, -CMPLX( ONE ), A( I+1, I ), 1,
 | 
						|
     $               A( I, I+1 ), LDA, A( I+1, I+1 ), LDA )
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      IF( ABS( A( N, N ) ).LT.SMIN ) THEN
 | 
						|
         INFO = N
 | 
						|
         A( N, N ) = CMPLX( SMIN, ZERO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Set last pivots to N
 | 
						|
*
 | 
						|
      IPIV( N ) = N
 | 
						|
      JPIV( N ) = N
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGETC2
 | 
						|
*
 | 
						|
      END
 |