201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DORG2R + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DORG2R generates an m by n real matrix Q with orthonormal columns,
 | |
| *> which is defined as the first n columns of a product of k elementary
 | |
| *> reflectors of order m
 | |
| *>
 | |
| *>       Q  =  H(1) H(2) . . . H(k)
 | |
| *>
 | |
| *> as returned by DGEQRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix Q. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix Q. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines the
 | |
| *>          matrix Q. N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the i-th column must contain the vector which
 | |
| *>          defines the elementary reflector H(i), for i = 1,2,...,k, as
 | |
| *>          returned by DGEQRF in the first k columns of its array
 | |
| *>          argument A.
 | |
| *>          On exit, the m-by-n matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The first dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (K)
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i), as returned by DGEQRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument has an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, L
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLARF, DSCAL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DORG2R', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Initialise columns k+1:n to columns of the unit matrix
 | |
| *
 | |
|       DO 20 J = K + 1, N
 | |
|          DO 10 L = 1, M
 | |
|             A( L, J ) = ZERO
 | |
|    10    CONTINUE
 | |
|          A( J, J ) = ONE
 | |
|    20 CONTINUE
 | |
| *
 | |
|       DO 40 I = K, 1, -1
 | |
| *
 | |
| *        Apply H(i) to A(i:m,i:n) from the left
 | |
| *
 | |
|          IF( I.LT.N ) THEN
 | |
|             A( I, I ) = ONE
 | |
|             CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
 | |
|      $                  A( I, I+1 ), LDA, WORK )
 | |
|          END IF
 | |
|          IF( I.LT.M )
 | |
|      $      CALL DSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
 | |
|          A( I, I ) = ONE - TAU( I )
 | |
| *
 | |
| *        Set A(1:i-1,i) to zero
 | |
| *
 | |
|          DO 30 L = 1, I - 1
 | |
|             A( L, I ) = ZERO
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DORG2R
 | |
| *
 | |
|       END
 |