1027 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1027 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLATRS + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrs.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrs.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrs.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
 | 
						|
*                          CNORM, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       DOUBLE PRECISION   SCALE
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   CNORM( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLATRS solves one of the triangular systems
 | 
						|
*>
 | 
						|
*>    A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
 | 
						|
*>
 | 
						|
*> with scaling to prevent overflow.  Here A is an upper or lower
 | 
						|
*> triangular matrix, A**T denotes the transpose of A, A**H denotes the
 | 
						|
*> conjugate transpose of A, x and b are n-element vectors, and s is a
 | 
						|
*> scaling factor, usually less than or equal to 1, chosen so that the
 | 
						|
*> components of x will be less than the overflow threshold.  If the
 | 
						|
*> unscaled problem will not cause overflow, the Level 2 BLAS routine
 | 
						|
*> ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
 | 
						|
*> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the operation applied to A.
 | 
						|
*>          = 'N':  Solve A * x = s*b     (No transpose)
 | 
						|
*>          = 'T':  Solve A**T * x = s*b  (Transpose)
 | 
						|
*>          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NORMIN
 | 
						|
*> \verbatim
 | 
						|
*>          NORMIN is CHARACTER*1
 | 
						|
*>          Specifies whether CNORM has been set or not.
 | 
						|
*>          = 'Y':  CNORM contains the column norms on entry
 | 
						|
*>          = 'N':  CNORM is not set on entry.  On exit, the norms will
 | 
						|
*>                  be computed and stored in CNORM.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
*>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | 
						|
*>          upper triangular part of the array A contains the upper
 | 
						|
*>          triangular matrix, and the strictly lower triangular part of
 | 
						|
*>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | 
						|
*>          triangular part of the array A contains the lower triangular
 | 
						|
*>          matrix, and the strictly upper triangular part of A is not
 | 
						|
*>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | 
						|
*>          also not referenced and are assumed to be 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max (1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (N)
 | 
						|
*>          On entry, the right hand side b of the triangular system.
 | 
						|
*>          On exit, X is overwritten by the solution vector x.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is DOUBLE PRECISION
 | 
						|
*>          The scaling factor s for the triangular system
 | 
						|
*>             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
 | 
						|
*>          If SCALE = 0, the matrix A is singular or badly scaled, and
 | 
						|
*>          the vector x is an exact or approximate solution to A*x = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] CNORM
 | 
						|
*> \verbatim
 | 
						|
*>          CNORM is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>
 | 
						|
*>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
 | 
						|
*>          contains the norm of the off-diagonal part of the j-th column
 | 
						|
*>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
 | 
						|
*>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
 | 
						|
*>          must be greater than or equal to the 1-norm.
 | 
						|
*>
 | 
						|
*>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
 | 
						|
*>          returns the 1-norm of the offdiagonal part of the j-th column
 | 
						|
*>          of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -k, the k-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  A rough bound on x is computed; if that is less than overflow, ZTRSV
 | 
						|
*>  is called, otherwise, specific code is used which checks for possible
 | 
						|
*>  overflow or divide-by-zero at every operation.
 | 
						|
*>
 | 
						|
*>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
 | 
						|
*>  if A is lower triangular is
 | 
						|
*>
 | 
						|
*>       x[1:n] := b[1:n]
 | 
						|
*>       for j = 1, ..., n
 | 
						|
*>            x(j) := x(j) / A(j,j)
 | 
						|
*>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
 | 
						|
*>       end
 | 
						|
*>
 | 
						|
*>  Define bounds on the components of x after j iterations of the loop:
 | 
						|
*>     M(j) = bound on x[1:j]
 | 
						|
*>     G(j) = bound on x[j+1:n]
 | 
						|
*>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
 | 
						|
*>
 | 
						|
*>  Then for iteration j+1 we have
 | 
						|
*>     M(j+1) <= G(j) / | A(j+1,j+1) |
 | 
						|
*>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
 | 
						|
*>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
 | 
						|
*>
 | 
						|
*>  where CNORM(j+1) is greater than or equal to the infinity-norm of
 | 
						|
*>  column j+1 of A, not counting the diagonal.  Hence
 | 
						|
*>
 | 
						|
*>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
 | 
						|
*>                  1<=i<=j
 | 
						|
*>  and
 | 
						|
*>
 | 
						|
*>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
 | 
						|
*>                                   1<=i< j
 | 
						|
*>
 | 
						|
*>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the
 | 
						|
*>  reciprocal of the largest M(j), j=1,..,n, is larger than
 | 
						|
*>  max(underflow, 1/overflow).
 | 
						|
*>
 | 
						|
*>  The bound on x(j) is also used to determine when a step in the
 | 
						|
*>  columnwise method can be performed without fear of overflow.  If
 | 
						|
*>  the computed bound is greater than a large constant, x is scaled to
 | 
						|
*>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
 | 
						|
*>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
 | 
						|
*>
 | 
						|
*>  Similarly, a row-wise scheme is used to solve A**T *x = b  or
 | 
						|
*>  A**H *x = b.  The basic algorithm for A upper triangular is
 | 
						|
*>
 | 
						|
*>       for j = 1, ..., n
 | 
						|
*>            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
 | 
						|
*>       end
 | 
						|
*>
 | 
						|
*>  We simultaneously compute two bounds
 | 
						|
*>       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
 | 
						|
*>       M(j) = bound on x(i), 1<=i<=j
 | 
						|
*>
 | 
						|
*>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
 | 
						|
*>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
 | 
						|
*>  Then the bound on x(j) is
 | 
						|
*>
 | 
						|
*>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
 | 
						|
*>
 | 
						|
*>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
 | 
						|
*>                      1<=i<=j
 | 
						|
*>
 | 
						|
*>  and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater
 | 
						|
*>  than max(underflow, 1/overflow).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
 | 
						|
     $                   CNORM, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, NORMIN, TRANS, UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
      DOUBLE PRECISION   SCALE
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   CNORM( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, HALF, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
 | 
						|
     $                   TWO = 2.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOTRAN, NOUNIT, UPPER
 | 
						|
      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
 | 
						|
      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
 | 
						|
     $                   XBND, XJ, XMAX
 | 
						|
      COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX, IZAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH, DZASUM
 | 
						|
      COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
 | 
						|
      EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
 | 
						|
     $                   ZDOTU, ZLADIV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTRSV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1, CABS2
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | 
						|
      CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
 | 
						|
     $                ABS( DIMAG( ZDUM ) / 2.D0 )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      NOTRAN = LSAME( TRANS, 'N' )
 | 
						|
      NOUNIT = LSAME( DIAG, 'N' )
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | 
						|
     $         LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
 | 
						|
     $         LSAME( NORMIN, 'N' ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZLATRS', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      SCALE = ONE
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine machine dependent parameters to control overflow.
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
      IF( LSAME( NORMIN, 'N' ) ) THEN
 | 
						|
*
 | 
						|
*        Compute the 1-norm of each column, not including the diagonal.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           A is upper triangular.
 | 
						|
*
 | 
						|
            DO 10 J = 1, N
 | 
						|
               CNORM( J ) = DZASUM( J-1, A( 1, J ), 1 )
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           A is lower triangular.
 | 
						|
*
 | 
						|
            DO 20 J = 1, N - 1
 | 
						|
               CNORM( J ) = DZASUM( N-J, A( J+1, J ), 1 )
 | 
						|
   20       CONTINUE
 | 
						|
            CNORM( N ) = ZERO
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale the column norms by TSCAL if the maximum element in CNORM is
 | 
						|
*     greater than BIGNUM/2.
 | 
						|
*
 | 
						|
      IMAX = IDAMAX( N, CNORM, 1 )
 | 
						|
      TMAX = CNORM( IMAX )
 | 
						|
      IF( TMAX.LE.BIGNUM*HALF ) THEN
 | 
						|
         TSCAL = ONE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Avoid NaN generation if entries in CNORM exceed the
 | 
						|
*        overflow threshold
 | 
						|
*
 | 
						|
         IF ( TMAX.LE.DLAMCH('Overflow') ) THEN
 | 
						|
*           Case 1: All entries in CNORM are valid floating-point numbers
 | 
						|
            TSCAL = HALF / ( SMLNUM*TMAX )
 | 
						|
            CALL DSCAL( N, TSCAL, CNORM, 1 )
 | 
						|
         ELSE
 | 
						|
*           Case 2: At least one column norm of A cannot be
 | 
						|
*           represented as a floating-point number. Find the
 | 
						|
*           maximum offdiagonal absolute value
 | 
						|
*           max( |Re(A(I,J))|, |Im(A(I,J)| ). If this entry is
 | 
						|
*           not +/- Infinity, use this value as TSCAL.
 | 
						|
            TMAX = ZERO
 | 
						|
            IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*              A is upper triangular.
 | 
						|
*
 | 
						|
               DO J = 2, N
 | 
						|
                  DO I = 1, J - 1
 | 
						|
                     TMAX = MAX( TMAX, ABS( DBLE( A( I, J ) ) ),
 | 
						|
     $                           ABS( DIMAG(A ( I, J ) ) ) )
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              A is lower triangular.
 | 
						|
*
 | 
						|
               DO J = 1, N - 1
 | 
						|
                  DO I = J + 1, N
 | 
						|
                     TMAX = MAX( TMAX, ABS( DBLE( A( I, J ) ) ),
 | 
						|
     $                           ABS( DIMAG(A ( I, J ) ) ) )
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( TMAX.LE.DLAMCH('Overflow') ) THEN
 | 
						|
               TSCAL = ONE / ( SMLNUM*TMAX )
 | 
						|
               DO J = 1, N
 | 
						|
                  IF( CNORM( J ).LE.DLAMCH('Overflow') ) THEN
 | 
						|
                     CNORM( J ) = CNORM( J )*TSCAL
 | 
						|
                  ELSE
 | 
						|
*                    Recompute the 1-norm of each column without
 | 
						|
*                    introducing Infinity in the summation.
 | 
						|
                     TSCAL = TWO * TSCAL
 | 
						|
                     CNORM( J ) = ZERO
 | 
						|
                     IF( UPPER ) THEN
 | 
						|
                        DO I = 1, J - 1
 | 
						|
                           CNORM( J ) = CNORM( J ) +
 | 
						|
     $                                  TSCAL * CABS2( A( I, J ) )
 | 
						|
                        END DO
 | 
						|
                     ELSE
 | 
						|
                        DO I = J + 1, N
 | 
						|
                           CNORM( J ) = CNORM( J ) +
 | 
						|
     $                                  TSCAL * CABS2( A( I, J ) )
 | 
						|
                        END DO
 | 
						|
                     END IF
 | 
						|
                     TSCAL = TSCAL * HALF
 | 
						|
                  END IF
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*              At least one entry of A is not a valid floating-point
 | 
						|
*              entry. Rely on TRSV to propagate Inf and NaN.
 | 
						|
               CALL ZTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute a bound on the computed solution vector to see if the
 | 
						|
*     Level 2 BLAS routine ZTRSV can be used.
 | 
						|
*
 | 
						|
      XMAX = ZERO
 | 
						|
      DO 30 J = 1, N
 | 
						|
         XMAX = MAX( XMAX, CABS2( X( J ) ) )
 | 
						|
   30 CONTINUE
 | 
						|
      XBND = XMAX
 | 
						|
*
 | 
						|
      IF( NOTRAN ) THEN
 | 
						|
*
 | 
						|
*        Compute the growth in A * x = b.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
            JFIRST = N
 | 
						|
            JLAST = 1
 | 
						|
            JINC = -1
 | 
						|
         ELSE
 | 
						|
            JFIRST = 1
 | 
						|
            JLAST = N
 | 
						|
            JINC = 1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( TSCAL.NE.ONE ) THEN
 | 
						|
            GROW = ZERO
 | 
						|
            GO TO 60
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( NOUNIT ) THEN
 | 
						|
*
 | 
						|
*           A is non-unit triangular.
 | 
						|
*
 | 
						|
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
 | 
						|
*           Initially, G(0) = max{x(i), i=1,...,n}.
 | 
						|
*
 | 
						|
            GROW = HALF / MAX( XBND, SMLNUM )
 | 
						|
            XBND = GROW
 | 
						|
            DO 40 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Exit the loop if the growth factor is too small.
 | 
						|
*
 | 
						|
               IF( GROW.LE.SMLNUM )
 | 
						|
     $            GO TO 60
 | 
						|
*
 | 
						|
               TJJS = A( J, J )
 | 
						|
               TJJ = CABS1( TJJS )
 | 
						|
*
 | 
						|
               IF( TJJ.GE.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*                 M(j) = G(j-1) / abs(A(j,j))
 | 
						|
*
 | 
						|
                  XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 M(j) could overflow, set XBND to 0.
 | 
						|
*
 | 
						|
                  XBND = ZERO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
 | 
						|
*
 | 
						|
                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 G(j) could overflow, set GROW to 0.
 | 
						|
*
 | 
						|
                  GROW = ZERO
 | 
						|
               END IF
 | 
						|
   40       CONTINUE
 | 
						|
            GROW = XBND
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           A is unit triangular.
 | 
						|
*
 | 
						|
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
 | 
						|
*
 | 
						|
            GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
 | 
						|
            DO 50 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Exit the loop if the growth factor is too small.
 | 
						|
*
 | 
						|
               IF( GROW.LE.SMLNUM )
 | 
						|
     $            GO TO 60
 | 
						|
*
 | 
						|
*              G(j) = G(j-1)*( 1 + CNORM(j) )
 | 
						|
*
 | 
						|
               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
 | 
						|
   50       CONTINUE
 | 
						|
         END IF
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute the growth in A**T * x = b  or  A**H * x = b.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
            JFIRST = 1
 | 
						|
            JLAST = N
 | 
						|
            JINC = 1
 | 
						|
         ELSE
 | 
						|
            JFIRST = N
 | 
						|
            JLAST = 1
 | 
						|
            JINC = -1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( TSCAL.NE.ONE ) THEN
 | 
						|
            GROW = ZERO
 | 
						|
            GO TO 90
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( NOUNIT ) THEN
 | 
						|
*
 | 
						|
*           A is non-unit triangular.
 | 
						|
*
 | 
						|
*           Compute GROW = 1/G(j) and XBND = 1/M(j).
 | 
						|
*           Initially, M(0) = max{x(i), i=1,...,n}.
 | 
						|
*
 | 
						|
            GROW = HALF / MAX( XBND, SMLNUM )
 | 
						|
            XBND = GROW
 | 
						|
            DO 70 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Exit the loop if the growth factor is too small.
 | 
						|
*
 | 
						|
               IF( GROW.LE.SMLNUM )
 | 
						|
     $            GO TO 90
 | 
						|
*
 | 
						|
*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
 | 
						|
*
 | 
						|
               XJ = ONE + CNORM( J )
 | 
						|
               GROW = MIN( GROW, XBND / XJ )
 | 
						|
*
 | 
						|
               TJJS = A( J, J )
 | 
						|
               TJJ = CABS1( TJJS )
 | 
						|
*
 | 
						|
               IF( TJJ.GE.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
 | 
						|
*
 | 
						|
                  IF( XJ.GT.TJJ )
 | 
						|
     $               XBND = XBND*( TJJ / XJ )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 M(j) could overflow, set XBND to 0.
 | 
						|
*
 | 
						|
                  XBND = ZERO
 | 
						|
               END IF
 | 
						|
   70       CONTINUE
 | 
						|
            GROW = MIN( GROW, XBND )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           A is unit triangular.
 | 
						|
*
 | 
						|
*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
 | 
						|
*
 | 
						|
            GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
 | 
						|
            DO 80 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Exit the loop if the growth factor is too small.
 | 
						|
*
 | 
						|
               IF( GROW.LE.SMLNUM )
 | 
						|
     $            GO TO 90
 | 
						|
*
 | 
						|
*              G(j) = ( 1 + CNORM(j) )*G(j-1)
 | 
						|
*
 | 
						|
               XJ = ONE + CNORM( J )
 | 
						|
               GROW = GROW / XJ
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
   90    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Use the Level 2 BLAS solve if the reciprocal of the bound on
 | 
						|
*        elements of X is not too small.
 | 
						|
*
 | 
						|
         CALL ZTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use a Level 1 BLAS solve, scaling intermediate results.
 | 
						|
*
 | 
						|
         IF( XMAX.GT.BIGNUM*HALF ) THEN
 | 
						|
*
 | 
						|
*           Scale X so that its components are less than or equal to
 | 
						|
*           BIGNUM in absolute value.
 | 
						|
*
 | 
						|
            SCALE = ( BIGNUM*HALF ) / XMAX
 | 
						|
            CALL ZDSCAL( N, SCALE, X, 1 )
 | 
						|
            XMAX = BIGNUM
 | 
						|
         ELSE
 | 
						|
            XMAX = XMAX*TWO
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( NOTRAN ) THEN
 | 
						|
*
 | 
						|
*           Solve A * x = b
 | 
						|
*
 | 
						|
            DO 120 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
 | 
						|
*
 | 
						|
               XJ = CABS1( X( J ) )
 | 
						|
               IF( NOUNIT ) THEN
 | 
						|
                  TJJS = A( J, J )*TSCAL
 | 
						|
               ELSE
 | 
						|
                  TJJS = TSCAL
 | 
						|
                  IF( TSCAL.EQ.ONE )
 | 
						|
     $               GO TO 110
 | 
						|
               END IF
 | 
						|
               TJJ = CABS1( TJJS )
 | 
						|
               IF( TJJ.GT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*                    abs(A(j,j)) > SMLNUM:
 | 
						|
*
 | 
						|
                  IF( TJJ.LT.ONE ) THEN
 | 
						|
                     IF( XJ.GT.TJJ*BIGNUM ) THEN
 | 
						|
*
 | 
						|
*                          Scale x by 1/b(j).
 | 
						|
*
 | 
						|
                        REC = ONE / XJ
 | 
						|
                        CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                        SCALE = SCALE*REC
 | 
						|
                        XMAX = XMAX*REC
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
                  X( J ) = ZLADIV( X( J ), TJJS )
 | 
						|
                  XJ = CABS1( X( J ) )
 | 
						|
               ELSE IF( TJJ.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                    0 < abs(A(j,j)) <= SMLNUM:
 | 
						|
*
 | 
						|
                  IF( XJ.GT.TJJ*BIGNUM ) THEN
 | 
						|
*
 | 
						|
*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
 | 
						|
*                       to avoid overflow when dividing by A(j,j).
 | 
						|
*
 | 
						|
                     REC = ( TJJ*BIGNUM ) / XJ
 | 
						|
                     IF( CNORM( J ).GT.ONE ) THEN
 | 
						|
*
 | 
						|
*                          Scale by 1/CNORM(j) to avoid overflow when
 | 
						|
*                          multiplying x(j) times column j.
 | 
						|
*
 | 
						|
                        REC = REC / CNORM( J )
 | 
						|
                     END IF
 | 
						|
                     CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                     SCALE = SCALE*REC
 | 
						|
                     XMAX = XMAX*REC
 | 
						|
                  END IF
 | 
						|
                  X( J ) = ZLADIV( X( J ), TJJS )
 | 
						|
                  XJ = CABS1( X( J ) )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
 | 
						|
*                    scale = 0, and compute a solution to A*x = 0.
 | 
						|
*
 | 
						|
                  DO 100 I = 1, N
 | 
						|
                     X( I ) = ZERO
 | 
						|
  100             CONTINUE
 | 
						|
                  X( J ) = ONE
 | 
						|
                  XJ = ONE
 | 
						|
                  SCALE = ZERO
 | 
						|
                  XMAX = ZERO
 | 
						|
               END IF
 | 
						|
  110          CONTINUE
 | 
						|
*
 | 
						|
*              Scale x if necessary to avoid overflow when adding a
 | 
						|
*              multiple of column j of A.
 | 
						|
*
 | 
						|
               IF( XJ.GT.ONE ) THEN
 | 
						|
                  REC = ONE / XJ
 | 
						|
                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
 | 
						|
*
 | 
						|
*                    Scale x by 1/(2*abs(x(j))).
 | 
						|
*
 | 
						|
                     REC = REC*HALF
 | 
						|
                     CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                     SCALE = SCALE*REC
 | 
						|
                  END IF
 | 
						|
               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
 | 
						|
*
 | 
						|
*                 Scale x by 1/2.
 | 
						|
*
 | 
						|
                  CALL ZDSCAL( N, HALF, X, 1 )
 | 
						|
                  SCALE = SCALE*HALF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( UPPER ) THEN
 | 
						|
                  IF( J.GT.1 ) THEN
 | 
						|
*
 | 
						|
*                    Compute the update
 | 
						|
*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
 | 
						|
*
 | 
						|
                     CALL ZAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
 | 
						|
     $                           1 )
 | 
						|
                     I = IZAMAX( J-1, X, 1 )
 | 
						|
                     XMAX = CABS1( X( I ) )
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
                  IF( J.LT.N ) THEN
 | 
						|
*
 | 
						|
*                    Compute the update
 | 
						|
*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
 | 
						|
*
 | 
						|
                     CALL ZAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
 | 
						|
     $                           X( J+1 ), 1 )
 | 
						|
                     I = J + IZAMAX( N-J, X( J+1 ), 1 )
 | 
						|
                     XMAX = CABS1( X( I ) )
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
  120       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
 | 
						|
*
 | 
						|
*           Solve A**T * x = b
 | 
						|
*
 | 
						|
            DO 170 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Compute x(j) = b(j) - sum A(k,j)*x(k).
 | 
						|
*                                    k<>j
 | 
						|
*
 | 
						|
               XJ = CABS1( X( J ) )
 | 
						|
               USCAL = TSCAL
 | 
						|
               REC = ONE / MAX( XMAX, ONE )
 | 
						|
               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
 | 
						|
*
 | 
						|
*                 If x(j) could overflow, scale x by 1/(2*XMAX).
 | 
						|
*
 | 
						|
                  REC = REC*HALF
 | 
						|
                  IF( NOUNIT ) THEN
 | 
						|
                     TJJS = A( J, J )*TSCAL
 | 
						|
                  ELSE
 | 
						|
                     TJJS = TSCAL
 | 
						|
                  END IF
 | 
						|
                  TJJ = CABS1( TJJS )
 | 
						|
                  IF( TJJ.GT.ONE ) THEN
 | 
						|
*
 | 
						|
*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
 | 
						|
*
 | 
						|
                     REC = MIN( ONE, REC*TJJ )
 | 
						|
                     USCAL = ZLADIV( USCAL, TJJS )
 | 
						|
                  END IF
 | 
						|
                  IF( REC.LT.ONE ) THEN
 | 
						|
                     CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                     SCALE = SCALE*REC
 | 
						|
                     XMAX = XMAX*REC
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               CSUMJ = ZERO
 | 
						|
               IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
 | 
						|
*
 | 
						|
*                 If the scaling needed for A in the dot product is 1,
 | 
						|
*                 call ZDOTU to perform the dot product.
 | 
						|
*
 | 
						|
                  IF( UPPER ) THEN
 | 
						|
                     CSUMJ = ZDOTU( J-1, A( 1, J ), 1, X, 1 )
 | 
						|
                  ELSE IF( J.LT.N ) THEN
 | 
						|
                     CSUMJ = ZDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Otherwise, use in-line code for the dot product.
 | 
						|
*
 | 
						|
                  IF( UPPER ) THEN
 | 
						|
                     DO 130 I = 1, J - 1
 | 
						|
                        CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
 | 
						|
  130                CONTINUE
 | 
						|
                  ELSE IF( J.LT.N ) THEN
 | 
						|
                     DO 140 I = J + 1, N
 | 
						|
                        CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
 | 
						|
  140                CONTINUE
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
 | 
						|
*
 | 
						|
*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
 | 
						|
*                 was not used to scale the dotproduct.
 | 
						|
*
 | 
						|
                  X( J ) = X( J ) - CSUMJ
 | 
						|
                  XJ = CABS1( X( J ) )
 | 
						|
                  IF( NOUNIT ) THEN
 | 
						|
                     TJJS = A( J, J )*TSCAL
 | 
						|
                  ELSE
 | 
						|
                     TJJS = TSCAL
 | 
						|
                     IF( TSCAL.EQ.ONE )
 | 
						|
     $                  GO TO 160
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
 | 
						|
*
 | 
						|
                  TJJ = CABS1( TJJS )
 | 
						|
                  IF( TJJ.GT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*                       abs(A(j,j)) > SMLNUM:
 | 
						|
*
 | 
						|
                     IF( TJJ.LT.ONE ) THEN
 | 
						|
                        IF( XJ.GT.TJJ*BIGNUM ) THEN
 | 
						|
*
 | 
						|
*                             Scale X by 1/abs(x(j)).
 | 
						|
*
 | 
						|
                           REC = ONE / XJ
 | 
						|
                           CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                           SCALE = SCALE*REC
 | 
						|
                           XMAX = XMAX*REC
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
                     X( J ) = ZLADIV( X( J ), TJJS )
 | 
						|
                  ELSE IF( TJJ.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                       0 < abs(A(j,j)) <= SMLNUM:
 | 
						|
*
 | 
						|
                     IF( XJ.GT.TJJ*BIGNUM ) THEN
 | 
						|
*
 | 
						|
*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
 | 
						|
*
 | 
						|
                        REC = ( TJJ*BIGNUM ) / XJ
 | 
						|
                        CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                        SCALE = SCALE*REC
 | 
						|
                        XMAX = XMAX*REC
 | 
						|
                     END IF
 | 
						|
                     X( J ) = ZLADIV( X( J ), TJJS )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
 | 
						|
*                       scale = 0 and compute a solution to A**T *x = 0.
 | 
						|
*
 | 
						|
                     DO 150 I = 1, N
 | 
						|
                        X( I ) = ZERO
 | 
						|
  150                CONTINUE
 | 
						|
                     X( J ) = ONE
 | 
						|
                     SCALE = ZERO
 | 
						|
                     XMAX = ZERO
 | 
						|
                  END IF
 | 
						|
  160             CONTINUE
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
 | 
						|
*                 product has already been divided by 1/A(j,j).
 | 
						|
*
 | 
						|
                  X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
 | 
						|
               END IF
 | 
						|
               XMAX = MAX( XMAX, CABS1( X( J ) ) )
 | 
						|
  170       CONTINUE
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Solve A**H * x = b
 | 
						|
*
 | 
						|
            DO 220 J = JFIRST, JLAST, JINC
 | 
						|
*
 | 
						|
*              Compute x(j) = b(j) - sum A(k,j)*x(k).
 | 
						|
*                                    k<>j
 | 
						|
*
 | 
						|
               XJ = CABS1( X( J ) )
 | 
						|
               USCAL = TSCAL
 | 
						|
               REC = ONE / MAX( XMAX, ONE )
 | 
						|
               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
 | 
						|
*
 | 
						|
*                 If x(j) could overflow, scale x by 1/(2*XMAX).
 | 
						|
*
 | 
						|
                  REC = REC*HALF
 | 
						|
                  IF( NOUNIT ) THEN
 | 
						|
                     TJJS = DCONJG( A( J, J ) )*TSCAL
 | 
						|
                  ELSE
 | 
						|
                     TJJS = TSCAL
 | 
						|
                  END IF
 | 
						|
                  TJJ = CABS1( TJJS )
 | 
						|
                  IF( TJJ.GT.ONE ) THEN
 | 
						|
*
 | 
						|
*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
 | 
						|
*
 | 
						|
                     REC = MIN( ONE, REC*TJJ )
 | 
						|
                     USCAL = ZLADIV( USCAL, TJJS )
 | 
						|
                  END IF
 | 
						|
                  IF( REC.LT.ONE ) THEN
 | 
						|
                     CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                     SCALE = SCALE*REC
 | 
						|
                     XMAX = XMAX*REC
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               CSUMJ = ZERO
 | 
						|
               IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
 | 
						|
*
 | 
						|
*                 If the scaling needed for A in the dot product is 1,
 | 
						|
*                 call ZDOTC to perform the dot product.
 | 
						|
*
 | 
						|
                  IF( UPPER ) THEN
 | 
						|
                     CSUMJ = ZDOTC( J-1, A( 1, J ), 1, X, 1 )
 | 
						|
                  ELSE IF( J.LT.N ) THEN
 | 
						|
                     CSUMJ = ZDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
 | 
						|
                  END IF
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Otherwise, use in-line code for the dot product.
 | 
						|
*
 | 
						|
                  IF( UPPER ) THEN
 | 
						|
                     DO 180 I = 1, J - 1
 | 
						|
                        CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
 | 
						|
     $                          X( I )
 | 
						|
  180                CONTINUE
 | 
						|
                  ELSE IF( J.LT.N ) THEN
 | 
						|
                     DO 190 I = J + 1, N
 | 
						|
                        CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
 | 
						|
     $                          X( I )
 | 
						|
  190                CONTINUE
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
 | 
						|
*
 | 
						|
*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
 | 
						|
*                 was not used to scale the dotproduct.
 | 
						|
*
 | 
						|
                  X( J ) = X( J ) - CSUMJ
 | 
						|
                  XJ = CABS1( X( J ) )
 | 
						|
                  IF( NOUNIT ) THEN
 | 
						|
                     TJJS = DCONJG( A( J, J ) )*TSCAL
 | 
						|
                  ELSE
 | 
						|
                     TJJS = TSCAL
 | 
						|
                     IF( TSCAL.EQ.ONE )
 | 
						|
     $                  GO TO 210
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
 | 
						|
*
 | 
						|
                  TJJ = CABS1( TJJS )
 | 
						|
                  IF( TJJ.GT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*                       abs(A(j,j)) > SMLNUM:
 | 
						|
*
 | 
						|
                     IF( TJJ.LT.ONE ) THEN
 | 
						|
                        IF( XJ.GT.TJJ*BIGNUM ) THEN
 | 
						|
*
 | 
						|
*                             Scale X by 1/abs(x(j)).
 | 
						|
*
 | 
						|
                           REC = ONE / XJ
 | 
						|
                           CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                           SCALE = SCALE*REC
 | 
						|
                           XMAX = XMAX*REC
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
                     X( J ) = ZLADIV( X( J ), TJJS )
 | 
						|
                  ELSE IF( TJJ.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                       0 < abs(A(j,j)) <= SMLNUM:
 | 
						|
*
 | 
						|
                     IF( XJ.GT.TJJ*BIGNUM ) THEN
 | 
						|
*
 | 
						|
*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
 | 
						|
*
 | 
						|
                        REC = ( TJJ*BIGNUM ) / XJ
 | 
						|
                        CALL ZDSCAL( N, REC, X, 1 )
 | 
						|
                        SCALE = SCALE*REC
 | 
						|
                        XMAX = XMAX*REC
 | 
						|
                     END IF
 | 
						|
                     X( J ) = ZLADIV( X( J ), TJJS )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
 | 
						|
*                       scale = 0 and compute a solution to A**H *x = 0.
 | 
						|
*
 | 
						|
                     DO 200 I = 1, N
 | 
						|
                        X( I ) = ZERO
 | 
						|
  200                CONTINUE
 | 
						|
                     X( J ) = ONE
 | 
						|
                     SCALE = ZERO
 | 
						|
                     XMAX = ZERO
 | 
						|
                  END IF
 | 
						|
  210             CONTINUE
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
 | 
						|
*                 product has already been divided by 1/A(j,j).
 | 
						|
*
 | 
						|
                  X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
 | 
						|
               END IF
 | 
						|
               XMAX = MAX( XMAX, CABS1( X( J ) ) )
 | 
						|
  220       CONTINUE
 | 
						|
         END IF
 | 
						|
         SCALE = SCALE / TSCAL
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Scale the column norms by 1/TSCAL for return.
 | 
						|
*
 | 
						|
      IF( TSCAL.NE.ONE ) THEN
 | 
						|
         CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLATRS
 | 
						|
*
 | 
						|
      END
 |