893 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			893 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZGGHD3
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGGHD3 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgghd3.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgghd3.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgghd3.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 | 
						|
*                          LDQ, Z, LDZ, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          COMPQ, COMPZ
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
*      $                   Z( LDZ, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGGHD3 reduces a pair of complex matrices (A,B) to generalized upper
 | 
						|
*> Hessenberg form using unitary transformations, where A is a
 | 
						|
*> general matrix and B is upper triangular.  The form of the
 | 
						|
*> generalized eigenvalue problem is
 | 
						|
*>    A*x = lambda*B*x,
 | 
						|
*> and B is typically made upper triangular by computing its QR
 | 
						|
*> factorization and moving the unitary matrix Q to the left side
 | 
						|
*> of the equation.
 | 
						|
*>
 | 
						|
*> This subroutine simultaneously reduces A to a Hessenberg matrix H:
 | 
						|
*>    Q**H*A*Z = H
 | 
						|
*> and transforms B to another upper triangular matrix T:
 | 
						|
*>    Q**H*B*Z = T
 | 
						|
*> in order to reduce the problem to its standard form
 | 
						|
*>    H*y = lambda*T*y
 | 
						|
*> where y = Z**H*x.
 | 
						|
*>
 | 
						|
*> The unitary matrices Q and Z are determined as products of Givens
 | 
						|
*> rotations.  They may either be formed explicitly, or they may be
 | 
						|
*> postmultiplied into input matrices Q1 and Z1, so that
 | 
						|
*>      Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
 | 
						|
*>      Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
 | 
						|
*> If Q1 is the unitary matrix from the QR factorization of B in the
 | 
						|
*> original equation A*x = lambda*B*x, then ZGGHD3 reduces the original
 | 
						|
*> problem to generalized Hessenberg form.
 | 
						|
*>
 | 
						|
*> This is a blocked variant of CGGHRD, using matrix-matrix
 | 
						|
*> multiplications for parts of the computation to enhance performance.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] COMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPQ is CHARACTER*1
 | 
						|
*>          = 'N': do not compute Q;
 | 
						|
*>          = 'I': Q is initialized to the unit matrix, and the
 | 
						|
*>                 unitary matrix Q is returned;
 | 
						|
*>          = 'V': Q must contain a unitary matrix Q1 on entry,
 | 
						|
*>                 and the product Q1*Q is returned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] COMPZ
 | 
						|
*> \verbatim
 | 
						|
*>          COMPZ is CHARACTER*1
 | 
						|
*>          = 'N': do not compute Z;
 | 
						|
*>          = 'I': Z is initialized to the unit matrix, and the
 | 
						|
*>                 unitary matrix Z is returned;
 | 
						|
*>          = 'V': Z must contain a unitary matrix Z1 on entry,
 | 
						|
*>                 and the product Z1*Z is returned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>
 | 
						|
*>          ILO and IHI mark the rows and columns of A which are to be
 | 
						|
*>          reduced.  It is assumed that A is already upper triangular
 | 
						|
*>          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
 | 
						|
*>          normally set by a previous call to ZGGBAL; otherwise they
 | 
						|
*>          should be set to 1 and N respectively.
 | 
						|
*>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA, N)
 | 
						|
*>          On entry, the N-by-N general matrix to be reduced.
 | 
						|
*>          On exit, the upper triangle and the first subdiagonal of A
 | 
						|
*>          are overwritten with the upper Hessenberg matrix H, and the
 | 
						|
*>          rest is set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB, N)
 | 
						|
*>          On entry, the N-by-N upper triangular matrix B.
 | 
						|
*>          On exit, the upper triangular matrix T = Q**H B Z.  The
 | 
						|
*>          elements below the diagonal are set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX*16 array, dimension (LDQ, N)
 | 
						|
*>          On entry, if COMPQ = 'V', the unitary matrix Q1, typically
 | 
						|
*>          from the QR factorization of B.
 | 
						|
*>          On exit, if COMPQ='I', the unitary matrix Q, and if
 | 
						|
*>          COMPQ = 'V', the product Q1*Q.
 | 
						|
*>          Not referenced if COMPQ='N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.
 | 
						|
*>          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX*16 array, dimension (LDZ, N)
 | 
						|
*>          On entry, if COMPZ = 'V', the unitary matrix Z1.
 | 
						|
*>          On exit, if COMPZ='I', the unitary matrix Z, and if
 | 
						|
*>          COMPZ = 'V', the product Z1*Z.
 | 
						|
*>          Not referenced if COMPZ='N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.
 | 
						|
*>          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (LWORK)
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in]  LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= 1.
 | 
						|
*>          For optimum performance LWORK >= 6*N*NB, where NB is the
 | 
						|
*>          optimal blocksize.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  This routine reduces A to Hessenberg form and maintains B in triangular form
 | 
						|
*>  using a blocked variant of Moler and Stewart's original algorithm,
 | 
						|
*>  as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti
 | 
						|
*>  (BIT 2008).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
 | 
						|
     $                   LDQ, Z, LDZ, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          COMPQ, COMPZ
 | 
						|
      INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N, LWORK
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
     $                   Z( LDZ, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         CONE, CZERO
 | 
						|
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
 | 
						|
     $                     CZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            BLK22, INITQ, INITZ, LQUERY, WANTQ, WANTZ
 | 
						|
      CHARACTER*1        COMPQ2, COMPZ2
 | 
						|
      INTEGER            COLA, I, IERR, J, J0, JCOL, JJ, JROW, K,
 | 
						|
     $                   KACC22, LEN, LWKOPT, N2NB, NB, NBLST, NBMIN,
 | 
						|
     $                   NH, NNB, NX, PPW, PPWO, PW, TOP, TOPQ
 | 
						|
      DOUBLE PRECISION   C
 | 
						|
      COMPLEX*16         C1, C2, CTEMP, S, S1, S2, TEMP, TEMP1, TEMP2,
 | 
						|
     $                   TEMP3
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV, LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZGGHRD, ZLARTG, ZLASET, ZUNM22, ZROT, ZGEMM,
 | 
						|
     $                   ZGEMV, ZTRMV, ZLACPY, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, DCMPLX, DCONJG, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NB = ILAENV( 1, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
 | 
						|
      LWKOPT = MAX( 6*N*NB, 1 )
 | 
						|
      WORK( 1 ) = DCMPLX( LWKOPT )
 | 
						|
      INITQ = LSAME( COMPQ, 'I' )
 | 
						|
      WANTQ = INITQ .OR. LSAME( COMPQ, 'V' )
 | 
						|
      INITZ = LSAME( COMPZ, 'I' )
 | 
						|
      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( ILO.LT.1 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( ( WANTQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( ( WANTZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -15
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGGHD3', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Initialize Q and Z if desired.
 | 
						|
*
 | 
						|
      IF( INITQ )
 | 
						|
     $   CALL ZLASET( 'All', N, N, CZERO, CONE, Q, LDQ )
 | 
						|
      IF( INITZ )
 | 
						|
     $   CALL ZLASET( 'All', N, N, CZERO, CONE, Z, LDZ )
 | 
						|
*
 | 
						|
*     Zero out lower triangle of B.
 | 
						|
*
 | 
						|
      IF( N.GT.1 )
 | 
						|
     $   CALL ZLASET( 'Lower', N-1, N-1, CZERO, CZERO, B(2, 1), LDB )
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      NH = IHI - ILO + 1
 | 
						|
      IF( NH.LE.1 ) THEN
 | 
						|
         WORK( 1 ) = CONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Determine the blocksize.
 | 
						|
*
 | 
						|
      NBMIN = ILAENV( 2, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.NH ) THEN
 | 
						|
*
 | 
						|
*        Determine when to use unblocked instead of blocked code.
 | 
						|
*
 | 
						|
         NX = MAX( NB, ILAENV( 3, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) )
 | 
						|
         IF( NX.LT.NH ) THEN
 | 
						|
*
 | 
						|
*           Determine if workspace is large enough for blocked code.
 | 
						|
*
 | 
						|
            IF( LWORK.LT.LWKOPT ) THEN
 | 
						|
*
 | 
						|
*              Not enough workspace to use optimal NB:  determine the
 | 
						|
*              minimum value of NB, and reduce NB or force use of
 | 
						|
*              unblocked code.
 | 
						|
*
 | 
						|
               NBMIN = MAX( 2, ILAENV( 2, 'ZGGHD3', ' ', N, ILO, IHI,
 | 
						|
     $                 -1 ) )
 | 
						|
               IF( LWORK.GE.6*N*NBMIN ) THEN
 | 
						|
                  NB = LWORK / ( 6*N )
 | 
						|
               ELSE
 | 
						|
                  NB = 1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code below
 | 
						|
*
 | 
						|
         JCOL = ILO
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code
 | 
						|
*
 | 
						|
         KACC22 = ILAENV( 16, 'ZGGHD3', ' ', N, ILO, IHI, -1 )
 | 
						|
         BLK22 = KACC22.EQ.2
 | 
						|
         DO JCOL = ILO, IHI-2, NB
 | 
						|
            NNB = MIN( NB, IHI-JCOL-1 )
 | 
						|
*
 | 
						|
*           Initialize small unitary factors that will hold the
 | 
						|
*           accumulated Givens rotations in workspace.
 | 
						|
*           N2NB   denotes the number of 2*NNB-by-2*NNB factors
 | 
						|
*           NBLST  denotes the (possibly smaller) order of the last
 | 
						|
*                  factor.
 | 
						|
*
 | 
						|
            N2NB = ( IHI-JCOL-1 ) / NNB - 1
 | 
						|
            NBLST = IHI - JCOL - N2NB*NNB
 | 
						|
            CALL ZLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK, NBLST )
 | 
						|
            PW = NBLST * NBLST + 1
 | 
						|
            DO I = 1, N2NB
 | 
						|
               CALL ZLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
 | 
						|
     $                      WORK( PW ), 2*NNB )
 | 
						|
               PW = PW + 4*NNB*NNB
 | 
						|
            END DO
 | 
						|
*
 | 
						|
*           Reduce columns JCOL:JCOL+NNB-1 of A to Hessenberg form.
 | 
						|
*
 | 
						|
            DO J = JCOL, JCOL+NNB-1
 | 
						|
*
 | 
						|
*              Reduce Jth column of A. Store cosines and sines in Jth
 | 
						|
*              column of A and B, respectively.
 | 
						|
*
 | 
						|
               DO I = IHI, J+2, -1
 | 
						|
                  TEMP = A( I-1, J )
 | 
						|
                  CALL ZLARTG( TEMP, A( I, J ), C, S, A( I-1, J ) )
 | 
						|
                  A( I, J ) = DCMPLX( C )
 | 
						|
                  B( I, J ) = S
 | 
						|
               END DO
 | 
						|
*
 | 
						|
*              Accumulate Givens rotations into workspace array.
 | 
						|
*
 | 
						|
               PPW  = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
 | 
						|
               LEN  = 2 + J - JCOL
 | 
						|
               JROW = J + N2NB*NNB + 2
 | 
						|
               DO I = IHI, JROW, -1
 | 
						|
                  CTEMP = A( I, J )
 | 
						|
                  S = B( I, J )
 | 
						|
                  DO JJ = PPW, PPW+LEN-1
 | 
						|
                     TEMP = WORK( JJ + NBLST )
 | 
						|
                     WORK( JJ + NBLST ) = CTEMP*TEMP - S*WORK( JJ )
 | 
						|
                     WORK( JJ ) = DCONJG( S )*TEMP + CTEMP*WORK( JJ )
 | 
						|
                  END DO
 | 
						|
                  LEN = LEN + 1
 | 
						|
                  PPW = PPW - NBLST - 1
 | 
						|
               END DO
 | 
						|
*
 | 
						|
               PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
 | 
						|
               J0 = JROW - NNB
 | 
						|
               DO JROW = J0, J+2, -NNB
 | 
						|
                  PPW = PPWO
 | 
						|
                  LEN  = 2 + J - JCOL
 | 
						|
                  DO I = JROW+NNB-1, JROW, -1
 | 
						|
                     CTEMP = A( I, J )
 | 
						|
                     S = B( I, J )
 | 
						|
                     DO JJ = PPW, PPW+LEN-1
 | 
						|
                        TEMP = WORK( JJ + 2*NNB )
 | 
						|
                        WORK( JJ + 2*NNB ) = CTEMP*TEMP - S*WORK( JJ )
 | 
						|
                        WORK( JJ ) = DCONJG( S )*TEMP + CTEMP*WORK( JJ )
 | 
						|
                     END DO
 | 
						|
                     LEN = LEN + 1
 | 
						|
                     PPW = PPW - 2*NNB - 1
 | 
						|
                  END DO
 | 
						|
                  PPWO = PPWO + 4*NNB*NNB
 | 
						|
               END DO
 | 
						|
*
 | 
						|
*              TOP denotes the number of top rows in A and B that will
 | 
						|
*              not be updated during the next steps.
 | 
						|
*
 | 
						|
               IF( JCOL.LE.2 ) THEN
 | 
						|
                  TOP = 0
 | 
						|
               ELSE
 | 
						|
                  TOP = JCOL
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Propagate transformations through B and replace stored
 | 
						|
*              left sines/cosines by right sines/cosines.
 | 
						|
*
 | 
						|
               DO JJ = N, J+1, -1
 | 
						|
*
 | 
						|
*                 Update JJth column of B.
 | 
						|
*
 | 
						|
                  DO I = MIN( JJ+1, IHI ), J+2, -1
 | 
						|
                     CTEMP = A( I, J )
 | 
						|
                     S = B( I, J )
 | 
						|
                     TEMP = B( I, JJ )
 | 
						|
                     B( I, JJ ) = CTEMP*TEMP - DCONJG( S )*B( I-1, JJ )
 | 
						|
                     B( I-1, JJ ) = S*TEMP + CTEMP*B( I-1, JJ )
 | 
						|
                  END DO
 | 
						|
*
 | 
						|
*                 Annihilate B( JJ+1, JJ ).
 | 
						|
*
 | 
						|
                  IF( JJ.LT.IHI ) THEN
 | 
						|
                     TEMP = B( JJ+1, JJ+1 )
 | 
						|
                     CALL ZLARTG( TEMP, B( JJ+1, JJ ), C, S,
 | 
						|
     $                            B( JJ+1, JJ+1 ) )
 | 
						|
                     B( JJ+1, JJ ) = CZERO
 | 
						|
                     CALL ZROT( JJ-TOP, B( TOP+1, JJ+1 ), 1,
 | 
						|
     $                          B( TOP+1, JJ ), 1, C, S )
 | 
						|
                     A( JJ+1, J ) = DCMPLX( C )
 | 
						|
                     B( JJ+1, J ) = -DCONJG( S )
 | 
						|
                  END IF
 | 
						|
               END DO
 | 
						|
*
 | 
						|
*              Update A by transformations from right.
 | 
						|
*
 | 
						|
               JJ = MOD( IHI-J-1, 3 )
 | 
						|
               DO I = IHI-J-3, JJ+1, -3
 | 
						|
                  CTEMP = A( J+1+I, J )
 | 
						|
                  S = -B( J+1+I, J )
 | 
						|
                  C1 = A( J+2+I, J )
 | 
						|
                  S1 = -B( J+2+I, J )
 | 
						|
                  C2 = A( J+3+I, J )
 | 
						|
                  S2 = -B( J+3+I, J )
 | 
						|
*
 | 
						|
                  DO K = TOP+1, IHI
 | 
						|
                     TEMP = A( K, J+I  )
 | 
						|
                     TEMP1 = A( K, J+I+1 )
 | 
						|
                     TEMP2 = A( K, J+I+2 )
 | 
						|
                     TEMP3 = A( K, J+I+3 )
 | 
						|
                     A( K, J+I+3 ) = C2*TEMP3 + DCONJG( S2 )*TEMP2
 | 
						|
                     TEMP2 = -S2*TEMP3 + C2*TEMP2
 | 
						|
                     A( K, J+I+2 ) = C1*TEMP2 + DCONJG( S1 )*TEMP1
 | 
						|
                     TEMP1 = -S1*TEMP2 + C1*TEMP1
 | 
						|
                     A( K, J+I+1 ) = CTEMP*TEMP1 + DCONJG( S )*TEMP
 | 
						|
                     A( K, J+I ) = -S*TEMP1 + CTEMP*TEMP
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
*
 | 
						|
               IF( JJ.GT.0 ) THEN
 | 
						|
                  DO I = JJ, 1, -1
 | 
						|
                     C = DBLE( A( J+1+I, J ) )
 | 
						|
                     CALL ZROT( IHI-TOP, A( TOP+1, J+I+1 ), 1,
 | 
						|
     $                          A( TOP+1, J+I ), 1, C,
 | 
						|
     $                          -DCONJG( B( J+1+I, J ) ) )
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Update (J+1)th column of A by transformations from left.
 | 
						|
*
 | 
						|
               IF ( J .LT. JCOL + NNB - 1 ) THEN
 | 
						|
                  LEN  = 1 + J - JCOL
 | 
						|
*
 | 
						|
*                 Multiply with the trailing accumulated unitary
 | 
						|
*                 matrix, which takes the form
 | 
						|
*
 | 
						|
*                        [  U11  U12  ]
 | 
						|
*                    U = [            ],
 | 
						|
*                        [  U21  U22  ]
 | 
						|
*
 | 
						|
*                 where U21 is a LEN-by-LEN matrix and U12 is lower
 | 
						|
*                 triangular.
 | 
						|
*
 | 
						|
                  JROW = IHI - NBLST + 1
 | 
						|
                  CALL ZGEMV( 'Conjugate', NBLST, LEN, CONE, WORK,
 | 
						|
     $                        NBLST, A( JROW, J+1 ), 1, CZERO,
 | 
						|
     $                        WORK( PW ), 1 )
 | 
						|
                  PPW = PW + LEN
 | 
						|
                  DO I = JROW, JROW+NBLST-LEN-1
 | 
						|
                     WORK( PPW ) = A( I, J+1 )
 | 
						|
                     PPW = PPW + 1
 | 
						|
                  END DO
 | 
						|
                  CALL ZTRMV( 'Lower', 'Conjugate', 'Non-unit',
 | 
						|
     $                        NBLST-LEN, WORK( LEN*NBLST + 1 ), NBLST,
 | 
						|
     $                        WORK( PW+LEN ), 1 )
 | 
						|
                  CALL ZGEMV( 'Conjugate', LEN, NBLST-LEN, CONE,
 | 
						|
     $                        WORK( (LEN+1)*NBLST - LEN + 1 ), NBLST,
 | 
						|
     $                        A( JROW+NBLST-LEN, J+1 ), 1, CONE,
 | 
						|
     $                        WORK( PW+LEN ), 1 )
 | 
						|
                  PPW = PW
 | 
						|
                  DO I = JROW, JROW+NBLST-1
 | 
						|
                     A( I, J+1 ) = WORK( PPW )
 | 
						|
                     PPW = PPW + 1
 | 
						|
                  END DO
 | 
						|
*
 | 
						|
*                 Multiply with the other accumulated unitary
 | 
						|
*                 matrices, which take the form
 | 
						|
*
 | 
						|
*                        [  U11  U12   0  ]
 | 
						|
*                        [                ]
 | 
						|
*                    U = [  U21  U22   0  ],
 | 
						|
*                        [                ]
 | 
						|
*                        [   0    0    I  ]
 | 
						|
*
 | 
						|
*                 where I denotes the (NNB-LEN)-by-(NNB-LEN) identity
 | 
						|
*                 matrix, U21 is a LEN-by-LEN upper triangular matrix
 | 
						|
*                 and U12 is an NNB-by-NNB lower triangular matrix.
 | 
						|
*
 | 
						|
                  PPWO = 1 + NBLST*NBLST
 | 
						|
                  J0 = JROW - NNB
 | 
						|
                  DO JROW = J0, JCOL+1, -NNB
 | 
						|
                     PPW = PW + LEN
 | 
						|
                     DO I = JROW, JROW+NNB-1
 | 
						|
                        WORK( PPW ) = A( I, J+1 )
 | 
						|
                        PPW = PPW + 1
 | 
						|
                     END DO
 | 
						|
                     PPW = PW
 | 
						|
                     DO I = JROW+NNB, JROW+NNB+LEN-1
 | 
						|
                        WORK( PPW ) = A( I, J+1 )
 | 
						|
                        PPW = PPW + 1
 | 
						|
                     END DO
 | 
						|
                     CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', LEN,
 | 
						|
     $                           WORK( PPWO + NNB ), 2*NNB, WORK( PW ),
 | 
						|
     $                           1 )
 | 
						|
                     CALL ZTRMV( 'Lower', 'Conjugate', 'Non-unit', NNB,
 | 
						|
     $                           WORK( PPWO + 2*LEN*NNB ),
 | 
						|
     $                           2*NNB, WORK( PW + LEN ), 1 )
 | 
						|
                     CALL ZGEMV( 'Conjugate', NNB, LEN, CONE,
 | 
						|
     $                           WORK( PPWO ), 2*NNB, A( JROW, J+1 ), 1,
 | 
						|
     $                           CONE, WORK( PW ), 1 )
 | 
						|
                     CALL ZGEMV( 'Conjugate', LEN, NNB, CONE,
 | 
						|
     $                           WORK( PPWO + 2*LEN*NNB + NNB ), 2*NNB,
 | 
						|
     $                           A( JROW+NNB, J+1 ), 1, CONE,
 | 
						|
     $                           WORK( PW+LEN ), 1 )
 | 
						|
                     PPW = PW
 | 
						|
                     DO I = JROW, JROW+LEN+NNB-1
 | 
						|
                        A( I, J+1 ) = WORK( PPW )
 | 
						|
                        PPW = PPW + 1
 | 
						|
                     END DO
 | 
						|
                     PPWO = PPWO + 4*NNB*NNB
 | 
						|
                  END DO
 | 
						|
               END IF
 | 
						|
            END DO
 | 
						|
*
 | 
						|
*           Apply accumulated unitary matrices to A.
 | 
						|
*
 | 
						|
            COLA = N - JCOL - NNB + 1
 | 
						|
            J = IHI - NBLST + 1
 | 
						|
            CALL ZGEMM( 'Conjugate', 'No Transpose', NBLST,
 | 
						|
     $                  COLA, NBLST, CONE, WORK, NBLST,
 | 
						|
     $                  A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
 | 
						|
     $                  NBLST )
 | 
						|
            CALL ZLACPY( 'All', NBLST, COLA, WORK( PW ), NBLST,
 | 
						|
     $                   A( J, JCOL+NNB ), LDA )
 | 
						|
            PPWO = NBLST*NBLST + 1
 | 
						|
            J0 = J - NNB
 | 
						|
            DO J = J0, JCOL+1, -NNB
 | 
						|
               IF ( BLK22 ) THEN
 | 
						|
*
 | 
						|
*                 Exploit the structure of
 | 
						|
*
 | 
						|
*                        [  U11  U12  ]
 | 
						|
*                    U = [            ]
 | 
						|
*                        [  U21  U22  ],
 | 
						|
*
 | 
						|
*                 where all blocks are NNB-by-NNB, U21 is upper
 | 
						|
*                 triangular and U12 is lower triangular.
 | 
						|
*
 | 
						|
                  CALL ZUNM22( 'Left', 'Conjugate', 2*NNB, COLA, NNB,
 | 
						|
     $                         NNB, WORK( PPWO ), 2*NNB,
 | 
						|
     $                         A( J, JCOL+NNB ), LDA, WORK( PW ),
 | 
						|
     $                         LWORK-PW+1, IERR )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Ignore the structure of U.
 | 
						|
*
 | 
						|
                  CALL ZGEMM( 'Conjugate', 'No Transpose', 2*NNB,
 | 
						|
     $                        COLA, 2*NNB, CONE, WORK( PPWO ), 2*NNB,
 | 
						|
     $                        A( J, JCOL+NNB ), LDA, CZERO, WORK( PW ),
 | 
						|
     $                        2*NNB )
 | 
						|
                  CALL ZLACPY( 'All', 2*NNB, COLA, WORK( PW ), 2*NNB,
 | 
						|
     $                         A( J, JCOL+NNB ), LDA )
 | 
						|
               END IF
 | 
						|
               PPWO = PPWO + 4*NNB*NNB
 | 
						|
            END DO
 | 
						|
*
 | 
						|
*           Apply accumulated unitary matrices to Q.
 | 
						|
*
 | 
						|
            IF( WANTQ ) THEN
 | 
						|
               J = IHI - NBLST + 1
 | 
						|
               IF ( INITQ ) THEN
 | 
						|
                  TOPQ = MAX( 2, J - JCOL + 1 )
 | 
						|
                  NH  = IHI - TOPQ + 1
 | 
						|
               ELSE
 | 
						|
                  TOPQ = 1
 | 
						|
                  NH = N
 | 
						|
               END IF
 | 
						|
               CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
 | 
						|
     $                     NBLST, NBLST, CONE, Q( TOPQ, J ), LDQ,
 | 
						|
     $                     WORK, NBLST, CZERO, WORK( PW ), NH )
 | 
						|
               CALL ZLACPY( 'All', NH, NBLST, WORK( PW ), NH,
 | 
						|
     $                      Q( TOPQ, J ), LDQ )
 | 
						|
               PPWO = NBLST*NBLST + 1
 | 
						|
               J0 = J - NNB
 | 
						|
               DO J = J0, JCOL+1, -NNB
 | 
						|
                  IF ( INITQ ) THEN
 | 
						|
                     TOPQ = MAX( 2, J - JCOL + 1 )
 | 
						|
                     NH  = IHI - TOPQ + 1
 | 
						|
                  END IF
 | 
						|
                  IF ( BLK22 ) THEN
 | 
						|
*
 | 
						|
*                    Exploit the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZUNM22( 'Right', 'No Transpose', NH, 2*NNB,
 | 
						|
     $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | 
						|
     $                            Q( TOPQ, J ), LDQ, WORK( PW ),
 | 
						|
     $                            LWORK-PW+1, IERR )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Ignore the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
 | 
						|
     $                           2*NNB, 2*NNB, CONE, Q( TOPQ, J ), LDQ,
 | 
						|
     $                           WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
 | 
						|
     $                           NH )
 | 
						|
                     CALL ZLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
 | 
						|
     $                            Q( TOPQ, J ), LDQ )
 | 
						|
                  END IF
 | 
						|
                  PPWO = PPWO + 4*NNB*NNB
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Accumulate right Givens rotations if required.
 | 
						|
*
 | 
						|
            IF ( WANTZ .OR. TOP.GT.0 ) THEN
 | 
						|
*
 | 
						|
*              Initialize small unitary factors that will hold the
 | 
						|
*              accumulated Givens rotations in workspace.
 | 
						|
*
 | 
						|
               CALL ZLASET( 'All', NBLST, NBLST, CZERO, CONE, WORK,
 | 
						|
     $                      NBLST )
 | 
						|
               PW = NBLST * NBLST + 1
 | 
						|
               DO I = 1, N2NB
 | 
						|
                  CALL ZLASET( 'All', 2*NNB, 2*NNB, CZERO, CONE,
 | 
						|
     $                         WORK( PW ), 2*NNB )
 | 
						|
                  PW = PW + 4*NNB*NNB
 | 
						|
               END DO
 | 
						|
*
 | 
						|
*              Accumulate Givens rotations into workspace array.
 | 
						|
*
 | 
						|
               DO J = JCOL, JCOL+NNB-1
 | 
						|
                  PPW  = ( NBLST + 1 )*( NBLST - 2 ) - J + JCOL + 1
 | 
						|
                  LEN  = 2 + J - JCOL
 | 
						|
                  JROW = J + N2NB*NNB + 2
 | 
						|
                  DO I = IHI, JROW, -1
 | 
						|
                     CTEMP = A( I, J )
 | 
						|
                     A( I, J ) = CZERO
 | 
						|
                     S = B( I, J )
 | 
						|
                     B( I, J ) = CZERO
 | 
						|
                     DO JJ = PPW, PPW+LEN-1
 | 
						|
                        TEMP = WORK( JJ + NBLST )
 | 
						|
                        WORK( JJ + NBLST ) = CTEMP*TEMP -
 | 
						|
     $                                       DCONJG( S )*WORK( JJ )
 | 
						|
                        WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
 | 
						|
                     END DO
 | 
						|
                     LEN = LEN + 1
 | 
						|
                     PPW = PPW - NBLST - 1
 | 
						|
                  END DO
 | 
						|
*
 | 
						|
                  PPWO = NBLST*NBLST + ( NNB+J-JCOL-1 )*2*NNB + NNB
 | 
						|
                  J0 = JROW - NNB
 | 
						|
                  DO JROW = J0, J+2, -NNB
 | 
						|
                     PPW = PPWO
 | 
						|
                     LEN  = 2 + J - JCOL
 | 
						|
                     DO I = JROW+NNB-1, JROW, -1
 | 
						|
                        CTEMP = A( I, J )
 | 
						|
                        A( I, J ) = CZERO
 | 
						|
                        S = B( I, J )
 | 
						|
                        B( I, J ) = CZERO
 | 
						|
                        DO JJ = PPW, PPW+LEN-1
 | 
						|
                           TEMP = WORK( JJ + 2*NNB )
 | 
						|
                           WORK( JJ + 2*NNB ) = CTEMP*TEMP -
 | 
						|
     $                                          DCONJG( S )*WORK( JJ )
 | 
						|
                           WORK( JJ ) = S*TEMP + CTEMP*WORK( JJ )
 | 
						|
                        END DO
 | 
						|
                        LEN = LEN + 1
 | 
						|
                        PPW = PPW - 2*NNB - 1
 | 
						|
                     END DO
 | 
						|
                     PPWO = PPWO + 4*NNB*NNB
 | 
						|
                  END DO
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               CALL ZLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
 | 
						|
     $                      A( JCOL + 2, JCOL ), LDA )
 | 
						|
               CALL ZLASET( 'Lower', IHI - JCOL - 1, NNB, CZERO, CZERO,
 | 
						|
     $                      B( JCOL + 2, JCOL ), LDB )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Apply accumulated unitary matrices to A and B.
 | 
						|
*
 | 
						|
            IF ( TOP.GT.0 ) THEN
 | 
						|
               J = IHI - NBLST + 1
 | 
						|
               CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
 | 
						|
     $                     NBLST, NBLST, CONE, A( 1, J ), LDA,
 | 
						|
     $                     WORK, NBLST, CZERO, WORK( PW ), TOP )
 | 
						|
               CALL ZLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
 | 
						|
     $                      A( 1, J ), LDA )
 | 
						|
               PPWO = NBLST*NBLST + 1
 | 
						|
               J0 = J - NNB
 | 
						|
               DO J = J0, JCOL+1, -NNB
 | 
						|
                  IF ( BLK22 ) THEN
 | 
						|
*
 | 
						|
*                    Exploit the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
 | 
						|
     $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | 
						|
     $                            A( 1, J ), LDA, WORK( PW ),
 | 
						|
     $                            LWORK-PW+1, IERR )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Ignore the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
 | 
						|
     $                           2*NNB, 2*NNB, CONE, A( 1, J ), LDA,
 | 
						|
     $                           WORK( PPWO ), 2*NNB, CZERO,
 | 
						|
     $                           WORK( PW ), TOP )
 | 
						|
                     CALL ZLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
 | 
						|
     $                            A( 1, J ), LDA )
 | 
						|
                  END IF
 | 
						|
                  PPWO = PPWO + 4*NNB*NNB
 | 
						|
               END DO
 | 
						|
*
 | 
						|
               J = IHI - NBLST + 1
 | 
						|
               CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
 | 
						|
     $                     NBLST, NBLST, CONE, B( 1, J ), LDB,
 | 
						|
     $                     WORK, NBLST, CZERO, WORK( PW ), TOP )
 | 
						|
               CALL ZLACPY( 'All', TOP, NBLST, WORK( PW ), TOP,
 | 
						|
     $                      B( 1, J ), LDB )
 | 
						|
               PPWO = NBLST*NBLST + 1
 | 
						|
               J0 = J - NNB
 | 
						|
               DO J = J0, JCOL+1, -NNB
 | 
						|
                  IF ( BLK22 ) THEN
 | 
						|
*
 | 
						|
*                    Exploit the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZUNM22( 'Right', 'No Transpose', TOP, 2*NNB,
 | 
						|
     $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | 
						|
     $                            B( 1, J ), LDB, WORK( PW ),
 | 
						|
     $                            LWORK-PW+1, IERR )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Ignore the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZGEMM( 'No Transpose', 'No Transpose', TOP,
 | 
						|
     $                           2*NNB, 2*NNB, CONE, B( 1, J ), LDB,
 | 
						|
     $                           WORK( PPWO ), 2*NNB, CZERO,
 | 
						|
     $                           WORK( PW ), TOP )
 | 
						|
                     CALL ZLACPY( 'All', TOP, 2*NNB, WORK( PW ), TOP,
 | 
						|
     $                            B( 1, J ), LDB )
 | 
						|
                  END IF
 | 
						|
                  PPWO = PPWO + 4*NNB*NNB
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Apply accumulated unitary matrices to Z.
 | 
						|
*
 | 
						|
            IF( WANTZ ) THEN
 | 
						|
               J = IHI - NBLST + 1
 | 
						|
               IF ( INITQ ) THEN
 | 
						|
                  TOPQ = MAX( 2, J - JCOL + 1 )
 | 
						|
                  NH  = IHI - TOPQ + 1
 | 
						|
               ELSE
 | 
						|
                  TOPQ = 1
 | 
						|
                  NH = N
 | 
						|
               END IF
 | 
						|
               CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
 | 
						|
     $                     NBLST, NBLST, CONE, Z( TOPQ, J ), LDZ,
 | 
						|
     $                     WORK, NBLST, CZERO, WORK( PW ), NH )
 | 
						|
               CALL ZLACPY( 'All', NH, NBLST, WORK( PW ), NH,
 | 
						|
     $                      Z( TOPQ, J ), LDZ )
 | 
						|
               PPWO = NBLST*NBLST + 1
 | 
						|
               J0 = J - NNB
 | 
						|
               DO J = J0, JCOL+1, -NNB
 | 
						|
                     IF ( INITQ ) THEN
 | 
						|
                     TOPQ = MAX( 2, J - JCOL + 1 )
 | 
						|
                     NH  = IHI - TOPQ + 1
 | 
						|
                  END IF
 | 
						|
                  IF ( BLK22 ) THEN
 | 
						|
*
 | 
						|
*                    Exploit the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZUNM22( 'Right', 'No Transpose', NH, 2*NNB,
 | 
						|
     $                            NNB, NNB, WORK( PPWO ), 2*NNB,
 | 
						|
     $                            Z( TOPQ, J ), LDZ, WORK( PW ),
 | 
						|
     $                            LWORK-PW+1, IERR )
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    Ignore the structure of U.
 | 
						|
*
 | 
						|
                     CALL ZGEMM( 'No Transpose', 'No Transpose', NH,
 | 
						|
     $                           2*NNB, 2*NNB, CONE, Z( TOPQ, J ), LDZ,
 | 
						|
     $                           WORK( PPWO ), 2*NNB, CZERO, WORK( PW ),
 | 
						|
     $                           NH )
 | 
						|
                     CALL ZLACPY( 'All', NH, 2*NNB, WORK( PW ), NH,
 | 
						|
     $                            Z( TOPQ, J ), LDZ )
 | 
						|
                  END IF
 | 
						|
                  PPWO = PPWO + 4*NNB*NNB
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Use unblocked code to reduce the rest of the matrix
 | 
						|
*     Avoid re-initialization of modified Q and Z.
 | 
						|
*
 | 
						|
      COMPQ2 = COMPQ
 | 
						|
      COMPZ2 = COMPZ
 | 
						|
      IF ( JCOL.NE.ILO ) THEN
 | 
						|
         IF ( WANTQ )
 | 
						|
     $      COMPQ2 = 'V'
 | 
						|
         IF ( WANTZ )
 | 
						|
     $      COMPZ2 = 'V'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF ( JCOL.LT.IHI )
 | 
						|
     $   CALL ZGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q,
 | 
						|
     $                LDQ, Z, LDZ, IERR )
 | 
						|
      WORK( 1 ) = DCMPLX( LWKOPT )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGGHD3
 | 
						|
*
 | 
						|
      END
 |