863 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			863 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b STGSEN
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download STGSEN + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsen.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsen.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsen.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE STGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 | 
						|
*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
 | 
						|
*                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            WANTQ, WANTZ
 | 
						|
*       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
 | 
						|
*      $                   M, N
 | 
						|
*       REAL               PL, PR
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            SELECT( * )
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
*      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
 | 
						|
*      $                   WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> STGSEN reorders the generalized real Schur decomposition of a real
 | 
						|
*> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
 | 
						|
*> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
 | 
						|
*> appears in the leading diagonal blocks of the upper quasi-triangular
 | 
						|
*> matrix A and the upper triangular B. The leading columns of Q and
 | 
						|
*> Z form orthonormal bases of the corresponding left and right eigen-
 | 
						|
*> spaces (deflating subspaces). (A, B) must be in generalized real
 | 
						|
*> Schur canonical form (as returned by SGGES), i.e. A is block upper
 | 
						|
*> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
 | 
						|
*> triangular.
 | 
						|
*>
 | 
						|
*> STGSEN also computes the generalized eigenvalues
 | 
						|
*>
 | 
						|
*>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
 | 
						|
*>
 | 
						|
*> of the reordered matrix pair (A, B).
 | 
						|
*>
 | 
						|
*> Optionally, STGSEN computes the estimates of reciprocal condition
 | 
						|
*> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
 | 
						|
*> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
 | 
						|
*> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
 | 
						|
*> the selected cluster and the eigenvalues outside the cluster, resp.,
 | 
						|
*> and norms of "projections" onto left and right eigenspaces w.r.t.
 | 
						|
*> the selected cluster in the (1,1)-block.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] IJOB
 | 
						|
*> \verbatim
 | 
						|
*>          IJOB is INTEGER
 | 
						|
*>          Specifies whether condition numbers are required for the
 | 
						|
*>          cluster of eigenvalues (PL and PR) or the deflating subspaces
 | 
						|
*>          (Difu and Difl):
 | 
						|
*>           =0: Only reorder w.r.t. SELECT. No extras.
 | 
						|
*>           =1: Reciprocal of norms of "projections" onto left and right
 | 
						|
*>               eigenspaces w.r.t. the selected cluster (PL and PR).
 | 
						|
*>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
 | 
						|
*>               (DIF(1:2)).
 | 
						|
*>           =3: Estimate of Difu and Difl. 1-norm-based estimate
 | 
						|
*>               (DIF(1:2)).
 | 
						|
*>               About 5 times as expensive as IJOB = 2.
 | 
						|
*>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
 | 
						|
*>               version to get it all.
 | 
						|
*>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTQ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTQ is LOGICAL
 | 
						|
*>          .TRUE. : update the left transformation matrix Q;
 | 
						|
*>          .FALSE.: do not update Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTZ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTZ is LOGICAL
 | 
						|
*>          .TRUE. : update the right transformation matrix Z;
 | 
						|
*>          .FALSE.: do not update Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL array, dimension (N)
 | 
						|
*>          SELECT specifies the eigenvalues in the selected cluster.
 | 
						|
*>          To select a real eigenvalue w(j), SELECT(j) must be set to
 | 
						|
*>          .TRUE.. To select a complex conjugate pair of eigenvalues
 | 
						|
*>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
 | 
						|
*>          either SELECT(j) or SELECT(j+1) or both must be set to
 | 
						|
*>          .TRUE.; a complex conjugate pair of eigenvalues must be
 | 
						|
*>          either both included in the cluster or both excluded.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension(LDA,N)
 | 
						|
*>          On entry, the upper quasi-triangular matrix A, with (A, B) in
 | 
						|
*>          generalized real Schur canonical form.
 | 
						|
*>          On exit, A is overwritten by the reordered matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension(LDB,N)
 | 
						|
*>          On entry, the upper triangular matrix B, with (A, B) in
 | 
						|
*>          generalized real Schur canonical form.
 | 
						|
*>          On exit, B is overwritten by the reordered matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAR
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAR is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ALPHAI
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHAI is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is REAL array, dimension (N)
 | 
						|
*>
 | 
						|
*>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
 | 
						|
*>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
 | 
						|
*>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
 | 
						|
*>          form (S,T) that would result if the 2-by-2 diagonal blocks of
 | 
						|
*>          the real generalized Schur form of (A,B) were further reduced
 | 
						|
*>          to triangular form using complex unitary transformations.
 | 
						|
*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
 | 
						|
*>          positive, then the j-th and (j+1)-st eigenvalues are a
 | 
						|
*>          complex conjugate pair, with ALPHAI(j+1) negative.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDQ,N)
 | 
						|
*>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
 | 
						|
*>          On exit, Q has been postmultiplied by the left orthogonal
 | 
						|
*>          transformation matrix which reorder (A, B); The leading M
 | 
						|
*>          columns of Q form orthonormal bases for the specified pair of
 | 
						|
*>          left eigenspaces (deflating subspaces).
 | 
						|
*>          If WANTQ = .FALSE., Q is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= 1;
 | 
						|
*>          and if WANTQ = .TRUE., LDQ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDZ,N)
 | 
						|
*>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
 | 
						|
*>          On exit, Z has been postmultiplied by the left orthogonal
 | 
						|
*>          transformation matrix which reorder (A, B); The leading M
 | 
						|
*>          columns of Z form orthonormal bases for the specified pair of
 | 
						|
*>          left eigenspaces (deflating subspaces).
 | 
						|
*>          If WANTZ = .FALSE., Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z. LDZ >= 1;
 | 
						|
*>          If WANTZ = .TRUE., LDZ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The dimension of the specified pair of left and right eigen-
 | 
						|
*>          spaces (deflating subspaces). 0 <= M <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PL
 | 
						|
*> \verbatim
 | 
						|
*>          PL is REAL
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PR
 | 
						|
*> \verbatim
 | 
						|
*>          PR is REAL
 | 
						|
*>
 | 
						|
*>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
 | 
						|
*>          reciprocal of the norm of "projections" onto left and right
 | 
						|
*>          eigenspaces with respect to the selected cluster.
 | 
						|
*>          0 < PL, PR <= 1.
 | 
						|
*>          If M = 0 or M = N, PL = PR  = 1.
 | 
						|
*>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] DIF
 | 
						|
*> \verbatim
 | 
						|
*>          DIF is REAL array, dimension (2).
 | 
						|
*>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
 | 
						|
*>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
 | 
						|
*>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
 | 
						|
*>          estimates of Difu and Difl.
 | 
						|
*>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
 | 
						|
*>          If IJOB = 0 or 1, DIF is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >=  4*N+16.
 | 
						|
*>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
 | 
						|
*>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK. LIWORK >= 1.
 | 
						|
*>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
 | 
						|
*>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal size of the IWORK array,
 | 
						|
*>          returns this value as the first entry of the IWORK array, and
 | 
						|
*>          no error message related to LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>            =0: Successful exit.
 | 
						|
*>            <0: If INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>            =1: Reordering of (A, B) failed because the transformed
 | 
						|
*>                matrix pair (A, B) would be too far from generalized
 | 
						|
*>                Schur form; the problem is very ill-conditioned.
 | 
						|
*>                (A, B) may have been partially reordered.
 | 
						|
*>                If requested, 0 is returned in DIF(*), PL and PR.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  STGSEN first collects the selected eigenvalues by computing
 | 
						|
*>  orthogonal U and W that move them to the top left corner of (A, B).
 | 
						|
*>  In other words, the selected eigenvalues are the eigenvalues of
 | 
						|
*>  (A11, B11) in:
 | 
						|
*>
 | 
						|
*>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
 | 
						|
*>                              ( 0  A22),( 0  B22) n2
 | 
						|
*>                                n1  n2    n1  n2
 | 
						|
*>
 | 
						|
*>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
 | 
						|
*>  of U and W span the specified pair of left and right eigenspaces
 | 
						|
*>  (deflating subspaces) of (A, B).
 | 
						|
*>
 | 
						|
*>  If (A, B) has been obtained from the generalized real Schur
 | 
						|
*>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
 | 
						|
*>  reordered generalized real Schur form of (C, D) is given by
 | 
						|
*>
 | 
						|
*>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
 | 
						|
*>
 | 
						|
*>  and the first n1 columns of Q*U and Z*W span the corresponding
 | 
						|
*>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
 | 
						|
*>
 | 
						|
*>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
 | 
						|
*>  then its value may differ significantly from its value before
 | 
						|
*>  reordering.
 | 
						|
*>
 | 
						|
*>  The reciprocal condition numbers of the left and right eigenspaces
 | 
						|
*>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
 | 
						|
*>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
 | 
						|
*>
 | 
						|
*>  The Difu and Difl are defined as:
 | 
						|
*>
 | 
						|
*>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
 | 
						|
*>  and
 | 
						|
*>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
 | 
						|
*>
 | 
						|
*>  where sigma-min(Zu) is the smallest singular value of the
 | 
						|
*>  (2*n1*n2)-by-(2*n1*n2) matrix
 | 
						|
*>
 | 
						|
*>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
 | 
						|
*>            [ kron(In2, B11)  -kron(B22**T, In1) ].
 | 
						|
*>
 | 
						|
*>  Here, Inx is the identity matrix of size nx and A22**T is the
 | 
						|
*>  transpose of A22. kron(X, Y) is the Kronecker product between
 | 
						|
*>  the matrices X and Y.
 | 
						|
*>
 | 
						|
*>  When DIF(2) is small, small changes in (A, B) can cause large changes
 | 
						|
*>  in the deflating subspace. An approximate (asymptotic) bound on the
 | 
						|
*>  maximum angular error in the computed deflating subspaces is
 | 
						|
*>
 | 
						|
*>       EPS * norm((A, B)) / DIF(2),
 | 
						|
*>
 | 
						|
*>  where EPS is the machine precision.
 | 
						|
*>
 | 
						|
*>  The reciprocal norm of the projectors on the left and right
 | 
						|
*>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
 | 
						|
*>  They are computed as follows. First we compute L and R so that
 | 
						|
*>  P*(A, B)*Q is block diagonal, where
 | 
						|
*>
 | 
						|
*>       P = ( I -L ) n1           Q = ( I R ) n1
 | 
						|
*>           ( 0  I ) n2    and        ( 0 I ) n2
 | 
						|
*>             n1 n2                    n1 n2
 | 
						|
*>
 | 
						|
*>  and (L, R) is the solution to the generalized Sylvester equation
 | 
						|
*>
 | 
						|
*>       A11*R - L*A22 = -A12
 | 
						|
*>       B11*R - L*B22 = -B12
 | 
						|
*>
 | 
						|
*>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
 | 
						|
*>  An approximate (asymptotic) bound on the average absolute error of
 | 
						|
*>  the selected eigenvalues is
 | 
						|
*>
 | 
						|
*>       EPS * norm((A, B)) / PL.
 | 
						|
*>
 | 
						|
*>  There are also global error bounds which valid for perturbations up
 | 
						|
*>  to a certain restriction:  A lower bound (x) on the smallest
 | 
						|
*>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
 | 
						|
*>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
 | 
						|
*>  (i.e. (A + E, B + F), is
 | 
						|
*>
 | 
						|
*>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
 | 
						|
*>
 | 
						|
*>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
 | 
						|
*>
 | 
						|
*>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
 | 
						|
*>  (L', R') and unperturbed (L, R) left and right deflating subspaces
 | 
						|
*>  associated with the selected cluster in the (1,1)-blocks can be
 | 
						|
*>  bounded as
 | 
						|
*>
 | 
						|
*>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
 | 
						|
*>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
 | 
						|
*>
 | 
						|
*>  See LAPACK User's Guide section 4.11 or the following references
 | 
						|
*>  for more information.
 | 
						|
*>
 | 
						|
*>  Note that if the default method for computing the Frobenius-norm-
 | 
						|
*>  based estimate DIF is not wanted (see SLATDF), then the parameter
 | 
						|
*>  IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF
 | 
						|
*>  (IJOB = 2 will be used)). See STGSYL for more details.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | 
						|
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | 
						|
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | 
						|
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | 
						|
*>
 | 
						|
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | 
						|
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | 
						|
*>      Estimation: Theory, Algorithms and Software,
 | 
						|
*>      Report UMINF - 94.04, Department of Computing Science, Umea
 | 
						|
*>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
 | 
						|
*>      Note 87. To appear in Numerical Algorithms, 1996.
 | 
						|
*>
 | 
						|
*>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | 
						|
*>      for Solving the Generalized Sylvester Equation and Estimating the
 | 
						|
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | 
						|
*>      Department of Computing Science, Umea University, S-901 87 Umea,
 | 
						|
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | 
						|
*>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
 | 
						|
*>      1996.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE STGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
 | 
						|
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
 | 
						|
     $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            WANTQ, WANTZ
 | 
						|
      INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
 | 
						|
     $                   M, N
 | 
						|
      REAL               PL, PR
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            SELECT( * )
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
 | 
						|
     $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
 | 
						|
     $                   WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            IDIFJB
 | 
						|
      PARAMETER          ( IDIFJB = 3 )
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
 | 
						|
     $                   WANTP
 | 
						|
      INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
 | 
						|
     $                   MN2, N1, N2
 | 
						|
      REAL               DSCALE, DSUM, EPS, RDSCAL, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLACN2, SLACPY, SLAG2, SLASSQ, STGEXC, STGSYL,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | 
						|
         INFO = -14
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
         INFO = -16
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'STGSEN', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SMLNUM = SLAMCH( 'S' ) / EPS
 | 
						|
      IERR = 0
 | 
						|
*
 | 
						|
      WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
 | 
						|
      WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
 | 
						|
      WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
 | 
						|
      WANTD = WANTD1 .OR. WANTD2
 | 
						|
*
 | 
						|
*     Set M to the dimension of the specified pair of deflating
 | 
						|
*     subspaces.
 | 
						|
*
 | 
						|
      M = 0
 | 
						|
      PAIR = .FALSE.
 | 
						|
      IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
 | 
						|
      DO 10 K = 1, N
 | 
						|
         IF( PAIR ) THEN
 | 
						|
            PAIR = .FALSE.
 | 
						|
         ELSE
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               IF( A( K+1, K ).EQ.ZERO ) THEN
 | 
						|
                  IF( SELECT( K ) )
 | 
						|
     $               M = M + 1
 | 
						|
               ELSE
 | 
						|
                  PAIR = .TRUE.
 | 
						|
                  IF( SELECT( K ) .OR. SELECT( K+1 ) )
 | 
						|
     $               M = M + 2
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               IF( SELECT( N ) )
 | 
						|
     $            M = M + 1
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
 | 
						|
         LWMIN = MAX( 1, 4*N+16, 2*M*(N-M) )
 | 
						|
         LIWMIN = MAX( 1, N+6 )
 | 
						|
      ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
 | 
						|
         LWMIN = MAX( 1, 4*N+16, 4*M*(N-M) )
 | 
						|
         LIWMIN = MAX( 1, 2*M*(N-M), N+6 )
 | 
						|
      ELSE
 | 
						|
         LWMIN = MAX( 1, 4*N+16 )
 | 
						|
         LIWMIN = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
      IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -22
 | 
						|
      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -24
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'STGSEN', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( M.EQ.N .OR. M.EQ.0 ) THEN
 | 
						|
         IF( WANTP ) THEN
 | 
						|
            PL = ONE
 | 
						|
            PR = ONE
 | 
						|
         END IF
 | 
						|
         IF( WANTD ) THEN
 | 
						|
            DSCALE = ZERO
 | 
						|
            DSUM = ONE
 | 
						|
            DO 20 I = 1, N
 | 
						|
               CALL SLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
 | 
						|
               CALL SLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
 | 
						|
   20       CONTINUE
 | 
						|
            DIF( 1 ) = DSCALE*SQRT( DSUM )
 | 
						|
            DIF( 2 ) = DIF( 1 )
 | 
						|
         END IF
 | 
						|
         GO TO 60
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Collect the selected blocks at the top-left corner of (A, B).
 | 
						|
*
 | 
						|
      KS = 0
 | 
						|
      PAIR = .FALSE.
 | 
						|
      DO 30 K = 1, N
 | 
						|
         IF( PAIR ) THEN
 | 
						|
            PAIR = .FALSE.
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
            SWAP = SELECT( K )
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               IF( A( K+1, K ).NE.ZERO ) THEN
 | 
						|
                  PAIR = .TRUE.
 | 
						|
                  SWAP = SWAP .OR. SELECT( K+1 )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( SWAP ) THEN
 | 
						|
               KS = KS + 1
 | 
						|
*
 | 
						|
*              Swap the K-th block to position KS.
 | 
						|
*              Perform the reordering of diagonal blocks in (A, B)
 | 
						|
*              by orthogonal transformation matrices and update
 | 
						|
*              Q and Z accordingly (if requested):
 | 
						|
*
 | 
						|
               KK = K
 | 
						|
               IF( K.NE.KS )
 | 
						|
     $            CALL STGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
 | 
						|
     $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
 | 
						|
*
 | 
						|
               IF( IERR.GT.0 ) THEN
 | 
						|
*
 | 
						|
*                 Swap is rejected: exit.
 | 
						|
*
 | 
						|
                  INFO = 1
 | 
						|
                  IF( WANTP ) THEN
 | 
						|
                     PL = ZERO
 | 
						|
                     PR = ZERO
 | 
						|
                  END IF
 | 
						|
                  IF( WANTD ) THEN
 | 
						|
                     DIF( 1 ) = ZERO
 | 
						|
                     DIF( 2 ) = ZERO
 | 
						|
                  END IF
 | 
						|
                  GO TO 60
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               IF( PAIR )
 | 
						|
     $            KS = KS + 1
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
      IF( WANTP ) THEN
 | 
						|
*
 | 
						|
*        Solve generalized Sylvester equation for R and L
 | 
						|
*        and compute PL and PR.
 | 
						|
*
 | 
						|
         N1 = M
 | 
						|
         N2 = N - M
 | 
						|
         I = N1 + 1
 | 
						|
         IJB = 0
 | 
						|
         CALL SLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
 | 
						|
         CALL SLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
 | 
						|
     $                N1 )
 | 
						|
         CALL STGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
 | 
						|
     $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
 | 
						|
     $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
 | 
						|
     $                LWORK-2*N1*N2, IWORK, IERR )
 | 
						|
*
 | 
						|
*        Estimate the reciprocal of norms of "projections" onto left
 | 
						|
*        and right eigenspaces.
 | 
						|
*
 | 
						|
         RDSCAL = ZERO
 | 
						|
         DSUM = ONE
 | 
						|
         CALL SLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
 | 
						|
         PL = RDSCAL*SQRT( DSUM )
 | 
						|
         IF( PL.EQ.ZERO ) THEN
 | 
						|
            PL = ONE
 | 
						|
         ELSE
 | 
						|
            PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
 | 
						|
         END IF
 | 
						|
         RDSCAL = ZERO
 | 
						|
         DSUM = ONE
 | 
						|
         CALL SLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
 | 
						|
         PR = RDSCAL*SQRT( DSUM )
 | 
						|
         IF( PR.EQ.ZERO ) THEN
 | 
						|
            PR = ONE
 | 
						|
         ELSE
 | 
						|
            PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTD ) THEN
 | 
						|
*
 | 
						|
*        Compute estimates of Difu and Difl.
 | 
						|
*
 | 
						|
         IF( WANTD1 ) THEN
 | 
						|
            N1 = M
 | 
						|
            N2 = N - M
 | 
						|
            I = N1 + 1
 | 
						|
            IJB = IDIFJB
 | 
						|
*
 | 
						|
*           Frobenius norm-based Difu-estimate.
 | 
						|
*
 | 
						|
            CALL STGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
 | 
						|
     $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
 | 
						|
     $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
 | 
						|
     $                   LWORK-2*N1*N2, IWORK, IERR )
 | 
						|
*
 | 
						|
*           Frobenius norm-based Difl-estimate.
 | 
						|
*
 | 
						|
            CALL STGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
 | 
						|
     $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
 | 
						|
     $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
 | 
						|
     $                   LWORK-2*N1*N2, IWORK, IERR )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*
 | 
						|
*           Compute 1-norm-based estimates of Difu and Difl using
 | 
						|
*           reversed communication with SLACN2. In each step a
 | 
						|
*           generalized Sylvester equation or a transposed variant
 | 
						|
*           is solved.
 | 
						|
*
 | 
						|
            KASE = 0
 | 
						|
            N1 = M
 | 
						|
            N2 = N - M
 | 
						|
            I = N1 + 1
 | 
						|
            IJB = 0
 | 
						|
            MN2 = 2*N1*N2
 | 
						|
*
 | 
						|
*           1-norm-based estimate of Difu.
 | 
						|
*
 | 
						|
   40       CONTINUE
 | 
						|
            CALL SLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
 | 
						|
     $                   KASE, ISAVE )
 | 
						|
            IF( KASE.NE.0 ) THEN
 | 
						|
               IF( KASE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Solve generalized Sylvester equation.
 | 
						|
*
 | 
						|
                  CALL STGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
 | 
						|
     $                         WORK, N1, B, LDB, B( I, I ), LDB,
 | 
						|
     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
 | 
						|
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | 
						|
     $                         IERR )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Solve the transposed variant.
 | 
						|
*
 | 
						|
                  CALL STGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
 | 
						|
     $                         WORK, N1, B, LDB, B( I, I ), LDB,
 | 
						|
     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
 | 
						|
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | 
						|
     $                         IERR )
 | 
						|
               END IF
 | 
						|
               GO TO 40
 | 
						|
            END IF
 | 
						|
            DIF( 1 ) = DSCALE / DIF( 1 )
 | 
						|
*
 | 
						|
*           1-norm-based estimate of Difl.
 | 
						|
*
 | 
						|
   50       CONTINUE
 | 
						|
            CALL SLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
 | 
						|
     $                   KASE, ISAVE )
 | 
						|
            IF( KASE.NE.0 ) THEN
 | 
						|
               IF( KASE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Solve generalized Sylvester equation.
 | 
						|
*
 | 
						|
                  CALL STGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
 | 
						|
     $                         WORK, N2, B( I, I ), LDB, B, LDB,
 | 
						|
     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
 | 
						|
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | 
						|
     $                         IERR )
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 Solve the transposed variant.
 | 
						|
*
 | 
						|
                  CALL STGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
 | 
						|
     $                         WORK, N2, B( I, I ), LDB, B, LDB,
 | 
						|
     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
 | 
						|
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
 | 
						|
     $                         IERR )
 | 
						|
               END IF
 | 
						|
               GO TO 50
 | 
						|
            END IF
 | 
						|
            DIF( 2 ) = DSCALE / DIF( 2 )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
*     Compute generalized eigenvalues of reordered pair (A, B) and
 | 
						|
*     normalize the generalized Schur form.
 | 
						|
*
 | 
						|
      PAIR = .FALSE.
 | 
						|
      DO 70 K = 1, N
 | 
						|
         IF( PAIR ) THEN
 | 
						|
            PAIR = .FALSE.
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               IF( A( K+1, K ).NE.ZERO ) THEN
 | 
						|
                  PAIR = .TRUE.
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IF( PAIR ) THEN
 | 
						|
*
 | 
						|
*             Compute the eigenvalue(s) at position K.
 | 
						|
*
 | 
						|
               WORK( 1 ) = A( K, K )
 | 
						|
               WORK( 2 ) = A( K+1, K )
 | 
						|
               WORK( 3 ) = A( K, K+1 )
 | 
						|
               WORK( 4 ) = A( K+1, K+1 )
 | 
						|
               WORK( 5 ) = B( K, K )
 | 
						|
               WORK( 6 ) = B( K+1, K )
 | 
						|
               WORK( 7 ) = B( K, K+1 )
 | 
						|
               WORK( 8 ) = B( K+1, K+1 )
 | 
						|
               CALL SLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
 | 
						|
     $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
 | 
						|
     $                     ALPHAI( K ) )
 | 
						|
               ALPHAI( K+1 ) = -ALPHAI( K )
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
               IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
 | 
						|
*
 | 
						|
*                 If B(K,K) is negative, make it positive
 | 
						|
*
 | 
						|
                  DO 80 I = 1, N
 | 
						|
                     A( K, I ) = -A( K, I )
 | 
						|
                     B( K, I ) = -B( K, I )
 | 
						|
                     IF( WANTQ ) Q( I, K ) = -Q( I, K )
 | 
						|
   80             CONTINUE
 | 
						|
               END IF
 | 
						|
*
 | 
						|
               ALPHAR( K ) = A( K, K )
 | 
						|
               ALPHAI( K ) = ZERO
 | 
						|
               BETA( K ) = B( K, K )
 | 
						|
*
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
   70 CONTINUE
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STGSEN
 | 
						|
*
 | 
						|
      END
 |