281 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			281 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSYGS2 reduces a symmetric definite generalized eigenproblem to standard form, using the factorization results obtained from spotrf (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSYGS2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygs2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygs2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygs2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, ITYPE, LDA, LDB, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSYGS2 reduces a real symmetric-definite generalized eigenproblem
 | 
						|
*> to standard form.
 | 
						|
*>
 | 
						|
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
 | 
						|
*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 | 
						|
*>
 | 
						|
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 | 
						|
*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T *A*L.
 | 
						|
*>
 | 
						|
*> B must have been previously factorized as U**T *U or L*L**T by SPOTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
 | 
						|
*>          = 2 or 3: compute U*A*U**T or L**T *A*L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored, and how B has been factorized.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | 
						|
*>          n by n upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading n by n lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the transformed matrix, stored in the
 | 
						|
*>          same format as A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,N)
 | 
						|
*>          The triangular factor from the Cholesky factorization of B,
 | 
						|
*>          as returned by SPOTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realSYcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, ITYPE, LDA, LDB, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, HALF
 | 
						|
      PARAMETER          ( ONE = 1.0, HALF = 0.5 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            K
 | 
						|
      REAL               AKK, BKK, CT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SSCAL, SSYR2, STRMV, STRSV, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSYGS2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.EQ.1 ) THEN
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute inv(U**T)*A*inv(U)
 | 
						|
*
 | 
						|
            DO 10 K = 1, N
 | 
						|
*
 | 
						|
*              Update the upper triangle of A(k:n,k:n)
 | 
						|
*
 | 
						|
               AKK = A( K, K )
 | 
						|
               BKK = B( K, K )
 | 
						|
               AKK = AKK / BKK**2
 | 
						|
               A( K, K ) = AKK
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
                  CALL SSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
 | 
						|
                  CT = -HALF*AKK
 | 
						|
                  CALL SAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
 | 
						|
     $                        LDA )
 | 
						|
                  CALL SSYR2( UPLO, N-K, -ONE, A( K, K+1 ), LDA,
 | 
						|
     $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
 | 
						|
                  CALL SAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
 | 
						|
     $                        LDA )
 | 
						|
                  CALL STRSV( UPLO, 'Transpose', 'Non-unit', N-K,
 | 
						|
     $                        B( K+1, K+1 ), LDB, A( K, K+1 ), LDA )
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute inv(L)*A*inv(L**T)
 | 
						|
*
 | 
						|
            DO 20 K = 1, N
 | 
						|
*
 | 
						|
*              Update the lower triangle of A(k:n,k:n)
 | 
						|
*
 | 
						|
               AKK = A( K, K )
 | 
						|
               BKK = B( K, K )
 | 
						|
               AKK = AKK / BKK**2
 | 
						|
               A( K, K ) = AKK
 | 
						|
               IF( K.LT.N ) THEN
 | 
						|
                  CALL SSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
 | 
						|
                  CT = -HALF*AKK
 | 
						|
                  CALL SAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
 | 
						|
                  CALL SSYR2( UPLO, N-K, -ONE, A( K+1, K ), 1,
 | 
						|
     $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
 | 
						|
                  CALL SAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
 | 
						|
                  CALL STRSV( UPLO, 'No transpose', 'Non-unit', N-K,
 | 
						|
     $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute U*A*U**T
 | 
						|
*
 | 
						|
            DO 30 K = 1, N
 | 
						|
*
 | 
						|
*              Update the upper triangle of A(1:k,1:k)
 | 
						|
*
 | 
						|
               AKK = A( K, K )
 | 
						|
               BKK = B( K, K )
 | 
						|
               CALL STRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
 | 
						|
     $                     LDB, A( 1, K ), 1 )
 | 
						|
               CT = HALF*AKK
 | 
						|
               CALL SAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
 | 
						|
               CALL SSYR2( UPLO, K-1, ONE, A( 1, K ), 1, B( 1, K ), 1,
 | 
						|
     $                     A, LDA )
 | 
						|
               CALL SAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
 | 
						|
               CALL SSCAL( K-1, BKK, A( 1, K ), 1 )
 | 
						|
               A( K, K ) = AKK*BKK**2
 | 
						|
   30       CONTINUE
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute L**T *A*L
 | 
						|
*
 | 
						|
            DO 40 K = 1, N
 | 
						|
*
 | 
						|
*              Update the lower triangle of A(1:k,1:k)
 | 
						|
*
 | 
						|
               AKK = A( K, K )
 | 
						|
               BKK = B( K, K )
 | 
						|
               CALL STRMV( UPLO, 'Transpose', 'Non-unit', K-1, B, LDB,
 | 
						|
     $                     A( K, 1 ), LDA )
 | 
						|
               CT = HALF*AKK
 | 
						|
               CALL SAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
 | 
						|
               CALL SSYR2( UPLO, K-1, ONE, A( K, 1 ), LDA, B( K, 1 ),
 | 
						|
     $                     LDB, A, LDA )
 | 
						|
               CALL SAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
 | 
						|
               CALL SSCAL( K-1, BKK, A( K, 1 ), LDA )
 | 
						|
               A( K, K ) = AKK*BKK**2
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSYGS2
 | 
						|
*
 | 
						|
      END
 |