888 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			888 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static complex c_b1 = {0.f,0.f};
 | 
						|
static complex c_b2 = {1.f,0.f};
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
 | 
						|
rices</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CGEGS + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegs.f
 | 
						|
"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegs.f
 | 
						|
"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegs.f
 | 
						|
"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, */
 | 
						|
/*                         VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, */
 | 
						|
/*                         INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBVSL, JOBVSR */
 | 
						|
/*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N */
 | 
						|
/*       REAL               RWORK( * ) */
 | 
						|
/*       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ), */
 | 
						|
/*      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
 | 
						|
/*      $                   WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > This routine is deprecated and has been replaced by routine CGGES. */
 | 
						|
/* > */
 | 
						|
/* > CGEGS computes the eigenvalues, Schur form, and, optionally, the */
 | 
						|
/* > left and or/right Schur vectors of a complex matrix pair (A,B). */
 | 
						|
/* > Given two square matrices A and B, the generalized Schur */
 | 
						|
/* > factorization has the form */
 | 
						|
/* > */
 | 
						|
/* >    A = Q*S*Z**H,  B = Q*T*Z**H */
 | 
						|
/* > */
 | 
						|
/* > where Q and Z are unitary matrices and S and T are upper triangular. */
 | 
						|
/* > The columns of Q are the left Schur vectors */
 | 
						|
/* > and the columns of Z are the right Schur vectors. */
 | 
						|
/* > */
 | 
						|
/* > If only the eigenvalues of (A,B) are needed, the driver routine */
 | 
						|
/* > CGEGV should be used instead.  See CGEGV for a description of the */
 | 
						|
/* > eigenvalues of the generalized nonsymmetric eigenvalue problem */
 | 
						|
/* > (GNEP). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOBVSL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVSL is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the left Schur vectors; */
 | 
						|
/* >          = 'V':  compute the left Schur vectors (returned in VSL). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBVSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVSR is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the right Schur vectors; */
 | 
						|
/* >          = 'V':  compute the right Schur vectors (returned in VSR). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices A, B, VSL, and VSR.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension (LDA, N) */
 | 
						|
/* >          On entry, the matrix A. */
 | 
						|
/* >          On exit, the upper triangular matrix S from the generalized */
 | 
						|
/* >          Schur factorization. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is COMPLEX array, dimension (LDB, N) */
 | 
						|
/* >          On entry, the matrix B. */
 | 
						|
/* >          On exit, the upper triangular matrix T from the generalized */
 | 
						|
/* >          Schur factorization. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHA is COMPLEX array, dimension (N) */
 | 
						|
/* >          The complex scalars alpha that define the eigenvalues of */
 | 
						|
/* >          GNEP.  ALPHA(j) = S(j,j), the diagonal element of the Schur */
 | 
						|
/* >          form of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is COMPLEX array, dimension (N) */
 | 
						|
/* >          The non-negative real scalars beta that define the */
 | 
						|
/* >          eigenvalues of GNEP.  BETA(j) = T(j,j), the diagonal element */
 | 
						|
/* >          of the triangular factor T. */
 | 
						|
/* > */
 | 
						|
/* >          Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
 | 
						|
/* >          represent the j-th eigenvalue of the matrix pair (A,B), in */
 | 
						|
/* >          one of the forms lambda = alpha/beta or mu = beta/alpha. */
 | 
						|
/* >          Since either lambda or mu may overflow, they should not, */
 | 
						|
/* >          in general, be computed. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VSL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VSL is COMPLEX array, dimension (LDVSL,N) */
 | 
						|
/* >          If JOBVSL = 'V', the matrix of left Schur vectors Q. */
 | 
						|
/* >          Not referenced if JOBVSL = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVSL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVSL is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VSL. LDVSL >= 1, and */
 | 
						|
/* >          if JOBVSL = 'V', LDVSL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VSR is COMPLEX array, dimension (LDVSR,N) */
 | 
						|
/* >          If JOBVSR = 'V', the matrix of right Schur vectors Z. */
 | 
						|
/* >          Not referenced if JOBVSR = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVSR is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VSR. LDVSR >= 1, and */
 | 
						|
/* >          if JOBVSR = 'V', LDVSR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK.  LWORK >= f2cmax(1,2*N). */
 | 
						|
/* >          For good performance, LWORK must generally be larger. */
 | 
						|
/* >          To compute the optimal value of LWORK, call ILAENV to get */
 | 
						|
/* >          blocksizes (for CGEQRF, CUNMQR, and CUNGQR.)  Then compute: */
 | 
						|
/* >          NB  -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; */
 | 
						|
/* >          the optimal LWORK is N*(NB+1). */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is REAL array, dimension (3*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* >          =1,...,N: */
 | 
						|
/* >                The QZ iteration failed.  (A,B) are not in Schur */
 | 
						|
/* >                form, but ALPHA(j) and BETA(j) should be correct for */
 | 
						|
/* >                j=INFO+1,...,N. */
 | 
						|
/* >          > N:  errors that usually indicate LAPACK problems: */
 | 
						|
/* >                =N+1: error return from CGGBAL */
 | 
						|
/* >                =N+2: error return from CGEQRF */
 | 
						|
/* >                =N+3: error return from CUNMQR */
 | 
						|
/* >                =N+4: error return from CUNGQR */
 | 
						|
/* >                =N+5: error return from CGGHRD */
 | 
						|
/* >                =N+6: error return from CHGEQZ (other than failed */
 | 
						|
/* >                                               iteration) */
 | 
						|
/* >                =N+7: error return from CGGBAK (computing VSL) */
 | 
						|
/* >                =N+8: error return from CGGBAK (computing VSR) */
 | 
						|
/* >                =N+9: error return from CLASCL (various places) */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexGEeigen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void cgegs_(char *jobvsl, char *jobvsr, integer *n, complex *
 | 
						|
	a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *
 | 
						|
	beta, complex *vsl, integer *ldvsl, complex *vsr, integer *ldvsr, 
 | 
						|
	complex *work, integer *lwork, real *rwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 
 | 
						|
	    vsr_dim1, vsr_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real anrm, bnrm;
 | 
						|
    integer itau, lopt;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer ileft, iinfo, icols;
 | 
						|
    logical ilvsl;
 | 
						|
    integer iwork;
 | 
						|
    logical ilvsr;
 | 
						|
    integer irows;
 | 
						|
    extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, real *, real *, integer *, complex *, integer *, 
 | 
						|
	    integer *), cggbal_(char *, integer *, complex *, 
 | 
						|
	    integer *, complex *, integer *, integer *, integer *, real *, 
 | 
						|
	    real *, real *, integer *);
 | 
						|
    integer nb;
 | 
						|
    extern real clange_(char *, integer *, integer *, complex *, integer *, 
 | 
						|
	    real *);
 | 
						|
    extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, complex *, integer *, complex *, integer *, complex *, 
 | 
						|
	    integer *, complex *, integer *, integer *), 
 | 
						|
	    clascl_(char *, integer *, integer *, real *, real *, integer *, 
 | 
						|
	    integer *, complex *, integer *, integer *);
 | 
						|
    logical ilascl, ilbscl;
 | 
						|
    extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *, 
 | 
						|
	    integer *, complex *, complex *, integer *, integer *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex 
 | 
						|
	    *, integer *, complex *, integer *), claset_(char *, 
 | 
						|
	    integer *, integer *, complex *, complex *, complex *, integer *);
 | 
						|
    real safmin;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *, 
 | 
						|
	    integer *, integer *, complex *, integer *, complex *, integer *, 
 | 
						|
	    complex *, complex *, complex *, integer *, complex *, integer *, 
 | 
						|
	    complex *, integer *, real *, integer *);
 | 
						|
    integer ijobvl, iright, ijobvr;
 | 
						|
    real anrmto;
 | 
						|
    integer lwkmin, nb1, nb2, nb3;
 | 
						|
    real bnrmto;
 | 
						|
    extern /* Subroutine */ void cungqr_(integer *, integer *, integer *, 
 | 
						|
	    complex *, integer *, complex *, complex *, integer *, integer *),
 | 
						|
	     cunmqr_(char *, char *, integer *, integer *, integer *, complex 
 | 
						|
	    *, integer *, complex *, complex *, integer *, complex *, integer 
 | 
						|
	    *, integer *);
 | 
						|
    real smlnum;
 | 
						|
    integer irwork, lwkopt;
 | 
						|
    logical lquery;
 | 
						|
    integer ihi, ilo;
 | 
						|
    real eps;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    --alpha;
 | 
						|
    --beta;
 | 
						|
    vsl_dim1 = *ldvsl;
 | 
						|
    vsl_offset = 1 + vsl_dim1 * 1;
 | 
						|
    vsl -= vsl_offset;
 | 
						|
    vsr_dim1 = *ldvsr;
 | 
						|
    vsr_offset = 1 + vsr_dim1 * 1;
 | 
						|
    vsr -= vsr_offset;
 | 
						|
    --work;
 | 
						|
    --rwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (lsame_(jobvsl, "N")) {
 | 
						|
	ijobvl = 1;
 | 
						|
	ilvsl = FALSE_;
 | 
						|
    } else if (lsame_(jobvsl, "V")) {
 | 
						|
	ijobvl = 2;
 | 
						|
	ilvsl = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvl = -1;
 | 
						|
	ilvsl = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(jobvsr, "N")) {
 | 
						|
	ijobvr = 1;
 | 
						|
	ilvsr = FALSE_;
 | 
						|
    } else if (lsame_(jobvsr, "V")) {
 | 
						|
	ijobvr = 2;
 | 
						|
	ilvsr = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvr = -1;
 | 
						|
	ilvsr = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
    i__1 = *n << 1;
 | 
						|
    lwkmin = f2cmax(i__1,1);
 | 
						|
    lwkopt = lwkmin;
 | 
						|
    work[1].r = (real) lwkopt, work[1].i = 0.f;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    *info = 0;
 | 
						|
    if (ijobvl <= 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (ijobvr <= 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*lwork < lwkmin && ! lquery) {
 | 
						|
	*info = -15;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
 | 
						|
		ftnlen)1);
 | 
						|
	nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | 
						|
		ftnlen)1);
 | 
						|
	nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | 
						|
		ftnlen)1);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = f2cmax(nb1,nb2);
 | 
						|
	nb = f2cmax(i__1,nb3);
 | 
						|
	lopt = *n * (nb + 1);
 | 
						|
	work[1].r = (real) lopt, work[1].i = 0.f;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CGEGS ", &i__1, 6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = slamch_("E") * slamch_("B");
 | 
						|
    safmin = slamch_("S");
 | 
						|
    smlnum = *n * safmin / eps;
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
 | 
						|
/*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
 | 
						|
    ilascl = FALSE_;
 | 
						|
    if (anrm > 0.f && anrm < smlnum) {
 | 
						|
	anrmto = smlnum;
 | 
						|
	ilascl = TRUE_;
 | 
						|
    } else if (anrm > bignum) {
 | 
						|
	anrmto = bignum;
 | 
						|
	ilascl = TRUE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilascl) {
 | 
						|
	clascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 9;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
 | 
						|
    ilbscl = FALSE_;
 | 
						|
    if (bnrm > 0.f && bnrm < smlnum) {
 | 
						|
	bnrmto = smlnum;
 | 
						|
	ilbscl = TRUE_;
 | 
						|
    } else if (bnrm > bignum) {
 | 
						|
	bnrmto = bignum;
 | 
						|
	ilbscl = TRUE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilbscl) {
 | 
						|
	clascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 9;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Permute the matrix to make it more nearly triangular */
 | 
						|
 | 
						|
    ileft = 1;
 | 
						|
    iright = *n + 1;
 | 
						|
    irwork = iright + *n;
 | 
						|
    iwork = 1;
 | 
						|
    cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
 | 
						|
	    ileft], &rwork[iright], &rwork[irwork], &iinfo);
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 1;
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce B to triangular form, and initialize VSL and/or VSR */
 | 
						|
 | 
						|
    irows = ihi + 1 - ilo;
 | 
						|
    icols = *n + 1 - ilo;
 | 
						|
    itau = iwork;
 | 
						|
    iwork = itau + irows;
 | 
						|
    i__1 = *lwork + 1 - iwork;
 | 
						|
    cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | 
						|
	    iwork], &i__1, &iinfo);
 | 
						|
    if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__3 = iwork;
 | 
						|
	i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 2;
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
 | 
						|
    i__1 = *lwork + 1 - iwork;
 | 
						|
    cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | 
						|
	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
 | 
						|
	    iinfo);
 | 
						|
    if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__3 = iwork;
 | 
						|
	i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 3;
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilvsl) {
 | 
						|
	claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
 | 
						|
	i__1 = irows - 1;
 | 
						|
	i__2 = irows - 1;
 | 
						|
	clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo 
 | 
						|
		+ 1 + ilo * vsl_dim1], ldvsl);
 | 
						|
	i__1 = *lwork + 1 - iwork;
 | 
						|
	cungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
 | 
						|
		work[itau], &work[iwork], &i__1, &iinfo);
 | 
						|
	if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	    i__3 = iwork;
 | 
						|
	    i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
 | 
						|
	    lwkopt = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 4;
 | 
						|
	    goto L10;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilvsr) {
 | 
						|
	claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce to generalized Hessenberg form */
 | 
						|
 | 
						|
    cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | 
						|
	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = *n + 5;
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Perform QZ algorithm, computing Schur vectors if desired */
 | 
						|
 | 
						|
    iwork = itau;
 | 
						|
    i__1 = *lwork + 1 - iwork;
 | 
						|
    chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | 
						|
	    b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
 | 
						|
	    vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &rwork[irwork], &
 | 
						|
	    iinfo);
 | 
						|
    if (iinfo >= 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__3 = iwork;
 | 
						|
	i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
    }
 | 
						|
    if (iinfo != 0) {
 | 
						|
	if (iinfo > 0 && iinfo <= *n) {
 | 
						|
	    *info = iinfo;
 | 
						|
	} else if (iinfo > *n && iinfo <= *n << 1) {
 | 
						|
	    *info = iinfo - *n;
 | 
						|
	} else {
 | 
						|
	    *info = *n + 6;
 | 
						|
	}
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Apply permutation to VSL and VSR */
 | 
						|
 | 
						|
    if (ilvsl) {
 | 
						|
	cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
 | 
						|
		vsl[vsl_offset], ldvsl, &iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 7;
 | 
						|
	    goto L10;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (ilvsr) {
 | 
						|
	cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
 | 
						|
		vsr[vsr_offset], ldvsr, &iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 8;
 | 
						|
	    goto L10;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Undo scaling */
 | 
						|
 | 
						|
    if (ilascl) {
 | 
						|
	clascl_("U", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 9;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
	clascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 9;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilbscl) {
 | 
						|
	clascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 9;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
	clascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = *n + 9;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
L10:
 | 
						|
    work[1].r = (real) lwkopt, work[1].i = 0.f;
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of CGEGS */
 | 
						|
 | 
						|
} /* cgegs_ */
 | 
						|
 |