306 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			306 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORGTSQR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORGTSQR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
 | |
| *      $                     INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL              A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORGTSQR generates an M-by-N real matrix Q_out with orthonormal columns,
 | |
| *> which are the first N columns of a product of real orthogonal
 | |
| *> matrices of order M which are returned by SLATSQR
 | |
| *>
 | |
| *>      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
 | |
| *>
 | |
| *> See the documentation for SLATSQR.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MB
 | |
| *> \verbatim
 | |
| *>          MB is INTEGER
 | |
| *>          The row block size used by SLATSQR to return
 | |
| *>          arrays A and T. MB > N.
 | |
| *>          (Note that if MB > M, then M is used instead of MB
 | |
| *>          as the row block size).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The column block size used by SLATSQR to return
 | |
| *>          arrays A and T. NB >= 1.
 | |
| *>          (Note that if NB > N, then N is used instead of NB
 | |
| *>          as the column block size).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>
 | |
| *>          On entry:
 | |
| *>
 | |
| *>             The elements on and above the diagonal are not accessed.
 | |
| *>             The elements below the diagonal represent the unit
 | |
| *>             lower-trapezoidal blocked matrix V computed by SLATSQR
 | |
| *>             that defines the input matrices Q_in(k) (ones on the
 | |
| *>             diagonal are not stored) (same format as the output A
 | |
| *>             below the diagonal in SLATSQR).
 | |
| *>
 | |
| *>          On exit:
 | |
| *>
 | |
| *>             The array A contains an M-by-N orthonormal matrix Q_out,
 | |
| *>             i.e the columns of A are orthogonal unit vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array,
 | |
| *>          dimension (LDT, N * NIRB)
 | |
| *>          where NIRB = Number_of_input_row_blocks
 | |
| *>                     = MAX( 1, CEIL((M-N)/(MB-N)) )
 | |
| *>          Let NICB = Number_of_input_col_blocks
 | |
| *>                   = CEIL(N/NB)
 | |
| *>
 | |
| *>          The upper-triangular block reflectors used to define the
 | |
| *>          input matrices Q_in(k), k=(1:NIRB*NICB). The block
 | |
| *>          reflectors are stored in compact form in NIRB block
 | |
| *>          reflector sequences. Each of NIRB block reflector sequences
 | |
| *>          is stored in a larger NB-by-N column block of T and consists
 | |
| *>          of NICB smaller NB-by-NB upper-triangular column blocks.
 | |
| *>          (same format as the output T in SLATSQR).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.
 | |
| *>          LDT >= max(1,min(NB1,N)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          (workspace) REAL array, dimension (MAX(2,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= (M+NB)*N.
 | |
| *>          If LWORK = -1, then a workspace query is assumed.
 | |
| *>          The routine only calculates the optimal size of the WORK
 | |
| *>          array, returns this value as the first entry of the WORK
 | |
| *>          array, and no error message related to LWORK is issued
 | |
| *>          by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup singleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> November 2019, Igor Kozachenko,
 | |
| *>                Computer Science Division,
 | |
| *>                University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORGTSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
 | |
|      $                     INFO )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL              A( LDA, * ), T( LDT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            IINFO, LDC, LWORKOPT, LC, LW, NBLOCAL, J
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SLAMTSQR, SLASET, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       LQUERY  = LWORK.EQ.-1
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( MB.LE.N ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NB.LT.1 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE
 | |
| *
 | |
| *        Test the input LWORK for the dimension of the array WORK.
 | |
| *        This workspace is used to store array C(LDC, N) and WORK(LWORK)
 | |
| *        in the call to SLAMTSQR. See the documentation for SLAMTSQR.
 | |
| *
 | |
|          IF( LWORK.LT.2 .AND. (.NOT.LQUERY) ) THEN
 | |
|             INFO = -10
 | |
|          ELSE
 | |
| *
 | |
| *           Set block size for column blocks
 | |
| *
 | |
|             NBLOCAL = MIN( NB, N )
 | |
| *
 | |
| *           LWORK = -1, then set the size for the array C(LDC,N)
 | |
| *           in SLAMTSQR call and set the optimal size of the work array
 | |
| *           WORK(LWORK) in SLAMTSQR call.
 | |
| *
 | |
|             LDC = M
 | |
|             LC = LDC*N
 | |
|             LW = N * NBLOCAL
 | |
| *
 | |
|             LWORKOPT = LC+LW
 | |
| *
 | |
|             IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN
 | |
|                INFO = -10
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Handle error in the input parameters and return workspace query.
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORGTSQR', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF ( LQUERY ) THEN
 | |
|          WORK( 1 ) = REAL( LWORKOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 ) THEN
 | |
|          WORK( 1 ) = REAL( LWORKOPT )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     (1) Form explicitly the tall-skinny M-by-N left submatrix Q1_in
 | |
| *     of M-by-M orthogonal matrix Q_in, which is implicitly stored in
 | |
| *     the subdiagonal part of input array A and in the input array T.
 | |
| *     Perform by the following operation using the routine SLAMTSQR.
 | |
| *
 | |
| *         Q1_in = Q_in * ( I ), where I is a N-by-N identity matrix,
 | |
| *                        ( 0 )        0 is a (M-N)-by-N zero matrix.
 | |
| *
 | |
| *     (1a) Form M-by-N matrix in the array WORK(1:LDC*N) with ones
 | |
| *     on the diagonal and zeros elsewhere.
 | |
| *
 | |
|       CALL SLASET( 'F', M, N, ZERO, ONE, WORK, LDC )
 | |
| *
 | |
| *     (1b)  On input, WORK(1:LDC*N) stores ( I );
 | |
| *                                          ( 0 )
 | |
| *
 | |
| *           On output, WORK(1:LDC*N) stores Q1_in.
 | |
| *
 | |
|       CALL SLAMTSQR( 'L', 'N', M, N, N, MB, NBLOCAL, A, LDA, T, LDT,
 | |
|      $               WORK, LDC, WORK( LC+1 ), LW, IINFO )
 | |
| *
 | |
| *     (2) Copy the result from the part of the work array (1:M,1:N)
 | |
| *     with the leading dimension LDC that starts at WORK(1) into
 | |
| *     the output array A(1:M,1:N) column-by-column.
 | |
| *
 | |
|       DO J = 1, N
 | |
|          CALL SCOPY( M, WORK( (J-1)*LDC + 1 ), 1, A( 1, J ), 1 )
 | |
|       END DO
 | |
| *
 | |
|       WORK( 1 ) = REAL( LWORKOPT )
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORGTSQR
 | |
| *
 | |
|       END
 |