1747 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1747 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* Subroutine */ int sgedmd_(char *jobs, char *jobz, char *jobr, char *jobf, 
 | |
| 	integer *whtsvd, integer *m, integer *n, real *x, integer *ldx, real *
 | |
| 	y, integer *ldy, integer *nrnk, real *tol, integer *k, real *reig, 
 | |
| 	real *imeig, real *z__, integer *ldz, real *res, real *b, integer *
 | |
| 	ldb, real *w, integer *ldw, real *s, integer *lds, real *work, 
 | |
| 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer x_dim1, x_offset, y_dim1, y_offset, z_dim1, z_offset, b_dim1, 
 | |
| 	    b_offset, w_dim1, w_offset, s_dim1, s_offset, i__1, i__2;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real zero, ssum;
 | |
|     integer info1, info2;
 | |
|     real xscl1, xscl2;
 | |
|     extern real snrm2_(integer *, real *, integer *);
 | |
|     integer i__, j;
 | |
|     real scale;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
 | |
|     logical badxy;
 | |
|     real small;
 | |
|     extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *), sgeev_(char *, char *, 
 | |
| 	    integer *, real *, integer *, real *, real *, real *, integer *, 
 | |
| 	    real *, integer *, real *, integer *, integer *);
 | |
|     char jobzl[1];
 | |
|     extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 
 | |
| 	    real *, integer *);
 | |
|     logical wntex;
 | |
|     real ab[4]	/* was [2][2] */;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     extern /* Subroutine */ int sgesdd_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, integer *, integer *), xerbla_(char *, integer 
 | |
| 	    *);
 | |
|     char t_or_n__[1];
 | |
|     extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     logical sccolx, sccoly;
 | |
|     extern logical sisnan_(real *);
 | |
|     extern /* Subroutine */ int sgesvd_(char *, char *, integer *, integer *, 
 | |
| 	    real *, integer *, real *, real *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *);
 | |
|     integer lwrsdd, mwrsdd;
 | |
|     extern /* Subroutine */ int sgejsv_(char *, char *, char *, char *, char *
 | |
| 	    , char *, integer *, integer *, real *, integer *, real *, real *,
 | |
| 	     integer *, real *, integer *, real *, integer *, integer *, 
 | |
| 	    integer *), 
 | |
| 	    slacpy_(char *, integer *, integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer iminwr;
 | |
|     logical wntref, wntvec;
 | |
|     real rootsc;
 | |
|     integer lwrkev, mlwork, mwrkev, numrnk, olwork;
 | |
|     real rdummy[2];
 | |
|     integer lwrsvd, mwrsvd;
 | |
|     logical lquery, wntres;
 | |
|     char jsvopt[1];
 | |
|     extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, 
 | |
| 	    real *), mecago_();
 | |
|     integer mwrsvj, lwrsvq, mwrsvq;
 | |
|     real rdummy2[2], ofl, one;
 | |
|     extern /* Subroutine */ int sgesvdq_(char *, char *, char *, char *, char 
 | |
| 	    *, integer *, integer *, real *, integer *, real *, real *, 
 | |
| 	    integer *, real *, integer *, integer *, integer *, integer *, 
 | |
| 	    real *, integer *, real *, integer *, integer *);
 | |
| 
 | |
| /* March 2023 */
 | |
| /* ..... */
 | |
| /*      USE                   iso_fortran_env */
 | |
| /*      INTEGER, PARAMETER :: WP = real32 */
 | |
| /* ..... */
 | |
| /*     Scalar arguments */
 | |
| /*     Array arguments */
 | |
| /* ............................................................ */
 | |
| /*     Purpose */
 | |
| /*     ======= */
 | |
| /*     SGEDMD computes the Dynamic Mode Decomposition (DMD) for */
 | |
| /*     a pair of data snapshot matrices. For the input matrices */
 | |
| /*     X and Y such that Y = A*X with an unaccessible matrix */
 | |
| /*     A, SGEDMD computes a certain number of Ritz pairs of A using */
 | |
| /*     the standard Rayleigh-Ritz extraction from a subspace of */
 | |
| /*     range(X) that is determined using the leading left singular */
 | |
| /*     vectors of X. Optionally, SGEDMD returns the residuals */
 | |
| /*     of the computed Ritz pairs, the information needed for */
 | |
| /*     a refinement of the Ritz vectors, or the eigenvectors of */
 | |
| /*     the Exact DMD. */
 | |
| /*     For further details see the references listed */
 | |
| /*     below. For more details of the implementation see [3]. */
 | |
| 
 | |
| /*     References */
 | |
| /*     ========== */
 | |
| /*     [1] P. Schmid: Dynamic mode decomposition of numerical */
 | |
| /*         and experimental data, */
 | |
| /*         Journal of Fluid Mechanics 656, 5-28, 2010. */
 | |
| /*     [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal */
 | |
| /*         decompositions: analysis and enhancements, */
 | |
| /*         SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. */
 | |
| /*     [3] Z. Drmac: A LAPACK implementation of the Dynamic */
 | |
| /*         Mode Decomposition I. Technical report. AIMDyn Inc. */
 | |
| /*         and LAPACK Working Note 298. */
 | |
| /*     [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. */
 | |
| /*         Brunton, N. Kutz: On Dynamic Mode Decomposition: */
 | |
| /*         Theory and Applications, Journal of Computational */
 | |
| /*         Dynamics 1(2), 391 -421, 2014. */
 | |
| 
 | |
| /* ...................................................................... */
 | |
| /*     Developed and supported by: */
 | |
| /*     =========================== */
 | |
| /*     Developed and coded by Zlatko Drmac, Faculty of Science, */
 | |
| /*     University of Zagreb;  drmac@math.hr */
 | |
| /*     In cooperation with */
 | |
| /*     AIMdyn Inc., Santa Barbara, CA. */
 | |
| /*     and supported by */
 | |
| /*     - DARPA SBIR project "Koopman Operator-Based Forecasting */
 | |
| /*     for Nonstationary Processes from Near-Term, Limited */
 | |
| /*     Observational Data" Contract No: W31P4Q-21-C-0007 */
 | |
| /*     - DARPA PAI project "Physics-Informed Machine Learning */
 | |
| /*     Methodologies" Contract No: HR0011-18-9-0033 */
 | |
| /*     - DARPA MoDyL project "A Data-Driven, Operator-Theoretic */
 | |
| /*     Framework for Space-Time Analysis of Process Dynamics" */
 | |
| /*     Contract No: HR0011-16-C-0116 */
 | |
| /*     Any opinions, findings and conclusions or recommendations */
 | |
| /*     expressed in this material are those of the author and */
 | |
| /*     do not necessarily reflect the views of the DARPA SBIR */
 | |
| /*     Program Office */
 | |
| /* ============================================================ */
 | |
| /*     Distribution Statement A: */
 | |
| /*     Approved for Public Release, Distribution Unlimited. */
 | |
| /*     Cleared by DARPA on September 29, 2022 */
 | |
| /* ============================================================ */
 | |
| /* ...................................................................... */
 | |
| /*     Arguments */
 | |
| /*     ========= */
 | |
| /*     JOBS (input) CHARACTER*1 */
 | |
| /*     Determines whether the initial data snapshots are scaled */
 | |
| /*     by a diagonal matrix. */
 | |
| /*     'S' :: The data snapshots matrices X and Y are multiplied */
 | |
| /*            with a diagonal matrix D so that X*D has unit */
 | |
| /*            nonzero columns (in the Euclidean 2-norm) */
 | |
| /*     'C' :: The snapshots are scaled as with the 'S' option. */
 | |
| /*            If it is found that an i-th column of X is zero */
 | |
| /*            vector and the corresponding i-th column of Y is */
 | |
| /*            non-zero, then the i-th column of Y is set to */
 | |
| /*            zero and a warning flag is raised. */
 | |
| /*     'Y' :: The data snapshots matrices X and Y are multiplied */
 | |
| /*            by a diagonal matrix D so that Y*D has unit */
 | |
| /*            nonzero columns (in the Euclidean 2-norm) */
 | |
| /*     'N' :: No data scaling. */
 | |
| /* ..... */
 | |
| /*     JOBZ (input) CHARACTER*1 */
 | |
| /*     Determines whether the eigenvectors (Koopman modes) will */
 | |
| /*     be computed. */
 | |
| /*     'V' :: The eigenvectors (Koopman modes) will be computed */
 | |
| /*            and returned in the matrix Z. */
 | |
| /*            See the description of Z. */
 | |
| /*     'F' :: The eigenvectors (Koopman modes) will be returned */
 | |
| /*            in factored form as the product X(:,1:K)*W, where X */
 | |
| /*            contains a POD basis (leading left singular vectors */
 | |
| /*            of the data matrix X) and W contains the eigenvectors */
 | |
| /*            of the corresponding Rayleigh quotient. */
 | |
| /*            See the descriptions of K, X, W, Z. */
 | |
| /*     'N' :: The eigenvectors are not computed. */
 | |
| /* ..... */
 | |
| /*     JOBR (input) CHARACTER*1 */
 | |
| /*     Determines whether to compute the residuals. */
 | |
| /*     'R' :: The residuals for the computed eigenpairs will be */
 | |
| /*            computed and stored in the array RES. */
 | |
| /*            See the description of RES. */
 | |
| /*            For this option to be legal, JOBZ must be 'V'. */
 | |
| /*     'N' :: The residuals are not computed. */
 | |
| /* ..... */
 | |
| /*     JOBF (input) CHARACTER*1 */
 | |
| /*     Specifies whether to store information needed for post- */
 | |
| /*     processing (e.g. computing refined Ritz vectors) */
 | |
| /*     'R' :: The matrix needed for the refinement of the Ritz */
 | |
| /*            vectors is computed and stored in the array B. */
 | |
| /*            See the description of B. */
 | |
| /*     'E' :: The unscaled eigenvectors of the Exact DMD are */
 | |
| /*            computed and returned in the array B. See the */
 | |
| /*            description of B. */
 | |
| /*     'N' :: No eigenvector refinement data is computed. */
 | |
| /* ..... */
 | |
| /*     WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } */
 | |
| /*     Allows for a selection of the SVD algorithm from the */
 | |
| /*     LAPACK library. */
 | |
| /*     1 :: SGESVD (the QR SVD algorithm) */
 | |
| /*     2 :: SGESDD (the Divide and Conquer algorithm; if enough */
 | |
| /*          workspace available, this is the fastest option) */
 | |
| /*     3 :: SGESVDQ (the preconditioned QR SVD  ; this and 4 */
 | |
| /*          are the most accurate options) */
 | |
| /*     4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3 */
 | |
| /*          are the most accurate options) */
 | |
| /*     For the four methods above, a significant difference in */
 | |
| /*     the accuracy of small singular values is possible if */
 | |
| /*     the snapshots vary in norm so that X is severely */
 | |
| /*     ill-conditioned. If small (smaller than EPS*||X||) */
 | |
| /*     singular values are of interest and JOBS=='N',  then */
 | |
| /*     the options (3, 4) give the most accurate results, where */
 | |
| /*     the option 4 is slightly better and with stronger */
 | |
| /*     theoretical background. */
 | |
| /*     If JOBS=='S', i.e. the columns of X will be normalized, */
 | |
| /*     then all methods give nearly equally accurate results. */
 | |
| /* ..... */
 | |
| /*     M (input) INTEGER, M>= 0 */
 | |
| /*     The state space dimension (the row dimension of X, Y). */
 | |
| /* ..... */
 | |
| /*     N (input) INTEGER, 0 <= N <= M */
 | |
| /*     The number of data snapshot pairs */
 | |
| /*     (the number of columns of X and Y). */
 | |
| /* ..... */
 | |
| /*     X (input/output) REAL(KIND=WP) M-by-N array */
 | |
| /*     > On entry, X contains the data snapshot matrix X. It is */
 | |
| /*     assumed that the column norms of X are in the range of */
 | |
| /*     the normalized floating point numbers. */
 | |
| /*     < On exit, the leading K columns of X contain a POD basis, */
 | |
| /*     i.e. the leading K left singular vectors of the input */
 | |
| /*     data matrix X, U(:,1:K). All N columns of X contain all */
 | |
| /*     left singular vectors of the input matrix X. */
 | |
| /*     See the descriptions of K, Z and W. */
 | |
| /* ..... */
 | |
| /*     LDX (input) INTEGER, LDX >= M */
 | |
| /*     The leading dimension of the array X. */
 | |
| /* ..... */
 | |
| /*     Y (input/workspace/output) REAL(KIND=WP) M-by-N array */
 | |
| /*     > On entry, Y contains the data snapshot matrix Y */
 | |
| /*     < On exit, */
 | |
| /*     If JOBR == 'R', the leading K columns of Y  contain */
 | |
| /*     the residual vectors for the computed Ritz pairs. */
 | |
| /*     See the description of RES. */
 | |
| /*     If JOBR == 'N', Y contains the original input data, */
 | |
| /*                     scaled according to the value of JOBS. */
 | |
| /* ..... */
 | |
| /*     LDY (input) INTEGER , LDY >= M */
 | |
| /*     The leading dimension of the array Y. */
 | |
| /* ..... */
 | |
| /*     NRNK (input) INTEGER */
 | |
| /*     Determines the mode how to compute the numerical rank, */
 | |
| /*     i.e. how to truncate small singular values of the input */
 | |
| /*     matrix X. On input, if */
 | |
| /*     NRNK = -1 :: i-th singular value sigma(i) is truncated */
 | |
| /*                  if sigma(i) <= TOL*sigma(1) */
 | |
| /*                  This option is recommended. */
 | |
| /*     NRNK = -2 :: i-th singular value sigma(i) is truncated */
 | |
| /*                  if sigma(i) <= TOL*sigma(i-1) */
 | |
| /*                  This option is included for R&D purposes. */
 | |
| /*                  It requires highly accurate SVD, which */
 | |
| /*                  may not be feasible. */
 | |
| /*     The numerical rank can be enforced by using positive */
 | |
| /*     value of NRNK as follows: */
 | |
| /*     0 < NRNK <= N :: at most NRNK largest singular values */
 | |
| /*     will be used. If the number of the computed nonzero */
 | |
| /*     singular values is less than NRNK, then only those */
 | |
| /*     nonzero values will be used and the actually used */
 | |
| /*     dimension is less than NRNK. The actual number of */
 | |
| /*     the nonzero singular values is returned in the variable */
 | |
| /*     K. See the descriptions of TOL and  K. */
 | |
| /* ..... */
 | |
| /*     TOL (input) REAL(KIND=WP), 0 <= TOL < 1 */
 | |
| /*     The tolerance for truncating small singular values. */
 | |
| /*     See the description of NRNK. */
 | |
| /* ..... */
 | |
| /*     K (output) INTEGER,  0 <= K <= N */
 | |
| /*     The dimension of the POD basis for the data snapshot */
 | |
| /*     matrix X and the number of the computed Ritz pairs. */
 | |
| /*     The value of K is determined according to the rule set */
 | |
| /*     by the parameters NRNK and TOL. */
 | |
| /*     See the descriptions of NRNK and TOL. */
 | |
| /* ..... */
 | |
| /*     REIG (output) REAL(KIND=WP) N-by-1 array */
 | |
| /*     The leading K (K<=N) entries of REIG contain */
 | |
| /*     the real parts of the computed eigenvalues */
 | |
| /*     REIG(1:K) + sqrt(-1)*IMEIG(1:K). */
 | |
| /*     See the descriptions of K, IMEIG, and Z. */
 | |
| /* ..... */
 | |
| /*     IMEIG (output) REAL(KIND=WP) N-by-1 array */
 | |
| /*     The leading K (K<=N) entries of IMEIG contain */
 | |
| /*     the imaginary parts of the computed eigenvalues */
 | |
| /*     REIG(1:K) + sqrt(-1)*IMEIG(1:K). */
 | |
| /*     The eigenvalues are determined as follows: */
 | |
| /*     If IMEIG(i) == 0, then the corresponding eigenvalue is */
 | |
| /*     real, LAMBDA(i) = REIG(i). */
 | |
| /*     If IMEIG(i)>0, then the corresponding complex */
 | |
| /*     conjugate pair of eigenvalues reads */
 | |
| /*     LAMBDA(i)   = REIG(i) + sqrt(-1)*IMAG(i) */
 | |
| /*     LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) */
 | |
| /*     That is, complex conjugate pairs have consecutive */
 | |
| /*     indices (i,i+1), with the positive imaginary part */
 | |
| /*     listed first. */
 | |
| /*     See the descriptions of K, REIG, and Z. */
 | |
| /* ..... */
 | |
| /*     Z (workspace/output) REAL(KIND=WP)  M-by-N array */
 | |
| /*     If JOBZ =='V' then */
 | |
| /*        Z contains real Ritz vectors as follows: */
 | |
| /*        If IMEIG(i)=0, then Z(:,i) is an eigenvector of */
 | |
| /*        the i-th Ritz value; ||Z(:,i)||_2=1. */
 | |
| /*        If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then */
 | |
| /*        [Z(:,i) Z(:,i+1)] span an invariant subspace and */
 | |
| /*        the Ritz values extracted from this subspace are */
 | |
| /*        REIG(i) + sqrt(-1)*IMEIG(i) and */
 | |
| /*        REIG(i) - sqrt(-1)*IMEIG(i). */
 | |
| /*        The corresponding eigenvectors are */
 | |
| /*        Z(:,i) + sqrt(-1)*Z(:,i+1) and */
 | |
| /*        Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. */
 | |
| /*        || Z(:,i:i+1)||_F = 1. */
 | |
| /*     If JOBZ == 'F', then the above descriptions hold for */
 | |
| /*     the columns of X(:,1:K)*W(1:K,1:K), where the columns */
 | |
| /*     of W(1:k,1:K) are the computed eigenvectors of the */
 | |
| /*     K-by-K Rayleigh quotient. The columns of W(1:K,1:K) */
 | |
| /*     are similarly structured: If IMEIG(i) == 0 then */
 | |
| /*     X(:,1:K)*W(:,i) is an eigenvector, and if IMEIG(i)>0 */
 | |
| /*     then X(:,1:K)*W(:,i)+sqrt(-1)*X(:,1:K)*W(:,i+1) and */
 | |
| /*          X(:,1:K)*W(:,i)-sqrt(-1)*X(:,1:K)*W(:,i+1) */
 | |
| /*     are the eigenvectors of LAMBDA(i), LAMBDA(i+1). */
 | |
| /*     See the descriptions of REIG, IMEIG, X and W. */
 | |
| /* ..... */
 | |
| /*     LDZ (input) INTEGER , LDZ >= M */
 | |
| /*     The leading dimension of the array Z. */
 | |
| /* ..... */
 | |
| /*     RES (output) REAL(KIND=WP) N-by-1 array */
 | |
| /*     RES(1:K) contains the residuals for the K computed */
 | |
| /*     Ritz pairs. */
 | |
| /*     If LAMBDA(i) is real, then */
 | |
| /*        RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. */
 | |
| /*     If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair */
 | |
| /*     then */
 | |
| /*     RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F */
 | |
| /*     where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] */
 | |
| /*               [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. */
 | |
| /*     It holds that */
 | |
| /*     RES(i)   = || A*ZC(:,i)   - LAMBDA(i)  *ZC(:,i)   ||_2 */
 | |
| /*     RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 */
 | |
| /*     where ZC(:,i)   =  Z(:,i) + sqrt(-1)*Z(:,i+1) */
 | |
| /*           ZC(:,i+1) =  Z(:,i) - sqrt(-1)*Z(:,i+1) */
 | |
| /*     See the description of REIG, IMEIG and Z. */
 | |
| /* ..... */
 | |
| /*     B (output) REAL(KIND=WP)  M-by-N array. */
 | |
| /*     IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can */
 | |
| /*     be used for computing the refined vectors; see further */
 | |
| /*     details in the provided references. */
 | |
| /*     If JOBF == 'E', B(1:M,1;K) contains */
 | |
| /*     A*U(:,1:K)*W(1:K,1:K), which are the vectors from the */
 | |
| /*     Exact DMD, up to scaling by the inverse eigenvalues. */
 | |
| /*     If JOBF =='N', then B is not referenced. */
 | |
| /*     See the descriptions of X, W, K. */
 | |
| /* ..... */
 | |
| /*     LDB (input) INTEGER, LDB >= M */
 | |
| /*     The leading dimension of the array B. */
 | |
| /* ..... */
 | |
| /*     W (workspace/output) REAL(KIND=WP) N-by-N array */
 | |
| /*     On exit, W(1:K,1:K) contains the K computed */
 | |
| /*     eigenvectors of the matrix Rayleigh quotient (real and */
 | |
| /*     imaginary parts for each complex conjugate pair of the */
 | |
| /*     eigenvalues). The Ritz vectors (returned in Z) are the */
 | |
| /*     product of X (containing a POD basis for the input */
 | |
| /*     matrix X) and W. See the descriptions of K, S, X and Z. */
 | |
| /*     W is also used as a workspace to temporarily store the */
 | |
| /*     left singular vectors of X. */
 | |
| /* ..... */
 | |
| /*     LDW (input) INTEGER, LDW >= N */
 | |
| /*     The leading dimension of the array W. */
 | |
| /* ..... */
 | |
| /*     S (workspace/output) REAL(KIND=WP) N-by-N array */
 | |
| /*     The array S(1:K,1:K) is used for the matrix Rayleigh */
 | |
| /*     quotient. This content is overwritten during */
 | |
| /*     the eigenvalue decomposition by SGEEV. */
 | |
| /*     See the description of K. */
 | |
| /* ..... */
 | |
| /*     LDS (input) INTEGER, LDS >= N */
 | |
| /*     The leading dimension of the array S. */
 | |
| /* ..... */
 | |
| /*     WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array */
 | |
| /*     On exit, WORK(1:N) contains the singular values of */
 | |
| /*     X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). */
 | |
| /*     If WHTSVD==4, then WORK(N+1) and WORK(N+2) contain */
 | |
| /*     scaling factor WORK(N+2)/WORK(N+1) used to scale X */
 | |
| /*     and Y to avoid overflow in the SVD of X. */
 | |
| /*     This may be of interest if the scaling option is off */
 | |
| /*     and as many as possible smallest eigenvalues are */
 | |
| /*     desired to the highest feasible accuracy. */
 | |
| /*     If the call to SGEDMD is only workspace query, then */
 | |
| /*     WORK(1) contains the minimal workspace length and */
 | |
| /*     WORK(2) is the optimal workspace length. Hence, the */
 | |
| /*     length of work is at least 2. */
 | |
| /*     See the description of LWORK. */
 | |
| /* ..... */
 | |
| /*     LWORK (input) INTEGER */
 | |
| /*     The minimal length of the workspace vector WORK. */
 | |
| /*     LWORK is calculated as follows: */
 | |
| /*     If WHTSVD == 1 :: */
 | |
| /*        If JOBZ == 'V', then */
 | |
| /*        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)). */
 | |
| /*        If JOBZ == 'N'  then */
 | |
| /*        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)). */
 | |
| /*        Here LWORK_SVD = MAX(1,3*N+M,5*N) is the minimal */
 | |
| /*        workspace length of SGESVD. */
 | |
| /*     If WHTSVD == 2 :: */
 | |
| /*        If JOBZ == 'V', then */
 | |
| /*        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)) */
 | |
| /*        If JOBZ == 'N', then */
 | |
| /*        LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)) */
 | |
| /*        Here LWORK_SVD = MAX(M, 5*N*N+4*N)+3*N*N is the */
 | |
| /*        minimal workspace length of SGESDD. */
 | |
| /*     If WHTSVD == 3 :: */
 | |
| /*        If JOBZ == 'V', then */
 | |
| /*        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N)) */
 | |
| /*        If JOBZ == 'N', then */
 | |
| /*        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N)) */
 | |
| /*        Here LWORK_SVD = N+M+MAX(3*N+1, */
 | |
| /*                        MAX(1,3*N+M,5*N),MAX(1,N)) */
 | |
| /*        is the minimal workspace length of SGESVDQ. */
 | |
| /*     If WHTSVD == 4 :: */
 | |
| /*        If JOBZ == 'V', then */
 | |
| /*        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N)) */
 | |
| /*        If JOBZ == 'N', then */
 | |
| /*        LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N)) */
 | |
| /*        Here LWORK_SVD = MAX(7,2*M+N,6*N+2*N*N) is the */
 | |
| /*        minimal workspace length of SGEJSV. */
 | |
| /*     The above expressions are not simplified in order to */
 | |
| /*     make the usage of WORK more transparent, and for */
 | |
| /*     easier checking. In any case, LWORK >= 2. */
 | |
| /*     If on entry LWORK = -1, then a workspace query is */
 | |
| /*     assumed and the procedure only computes the minimal */
 | |
| /*     and the optimal workspace lengths for both WORK and */
 | |
| /*     IWORK. See the descriptions of WORK and IWORK. */
 | |
| /* ..... */
 | |
| /*     IWORK (workspace/output) INTEGER LIWORK-by-1 array */
 | |
| /*     Workspace that is required only if WHTSVD equals */
 | |
| /*     2 , 3 or 4. (See the description of WHTSVD). */
 | |
| /*     If on entry LWORK =-1 or LIWORK=-1, then the */
 | |
| /*     minimal length of IWORK is computed and returned in */
 | |
| /*     IWORK(1). See the description of LIWORK. */
 | |
| /* ..... */
 | |
| /*     LIWORK (input) INTEGER */
 | |
| /*     The minimal length of the workspace vector IWORK. */
 | |
| /*     If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 */
 | |
| /*     If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) */
 | |
| /*     If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) */
 | |
| /*     If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) */
 | |
| /*     If on entry LIWORK = -1, then a workspace query is */
 | |
| /*     assumed and the procedure only computes the minimal */
 | |
| /*     and the optimal workspace lengths for both WORK and */
 | |
| /*     IWORK. See the descriptions of WORK and IWORK. */
 | |
| /* ..... */
 | |
| /*     INFO (output) INTEGER */
 | |
| /*     -i < 0 :: On entry, the i-th argument had an */
 | |
| /*               illegal value */
 | |
| /*        = 0 :: Successful return. */
 | |
| /*        = 1 :: Void input. Quick exit (M=0 or N=0). */
 | |
| /*        = 2 :: The SVD computation of X did not converge. */
 | |
| /*               Suggestion: Check the input data and/or */
 | |
| /*               repeat with different WHTSVD. */
 | |
| /*        = 3 :: The computation of the eigenvalues did not */
 | |
| /*               converge. */
 | |
| /*        = 4 :: If data scaling was requested on input and */
 | |
| /*               the procedure found inconsistency in the data */
 | |
| /*               such that for some column index i, */
 | |
| /*               X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set */
 | |
| /*               to zero if JOBS=='C'. The computation proceeds */
 | |
| /*               with original or modified data and warning */
 | |
| /*               flag is set with INFO=4. */
 | |
| /* ............................................................. */
 | |
| /* ............................................................. */
 | |
| /*     Parameters */
 | |
| /*     ~~~~~~~~~~ */
 | |
| /*     Local scalars */
 | |
| /*     ~~~~~~~~~~~~~ */
 | |
| /*     Local arrays */
 | |
| /*     ~~~~~~~~~~~~ */
 | |
| /*     External functions (BLAS and LAPACK) */
 | |
| /*     ~~~~~~~~~~~~~~~~~ */
 | |
| /*     External subroutines (BLAS and LAPACK) */
 | |
| /*     ~~~~~~~~~~~~~~~~~~~~ */
 | |
| /*     Intrinsic functions */
 | |
| /*     ~~~~~~~~~~~~~~~~~~~ */
 | |
| /* ............................................................ */
 | |
|     /* Parameter adjustments */
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     y_dim1 = *ldy;
 | |
|     y_offset = 1 + y_dim1 * 1;
 | |
|     y -= y_offset;
 | |
|     --reig;
 | |
|     --imeig;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --res;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     w_dim1 = *ldw;
 | |
|     w_offset = 1 + w_dim1 * 1;
 | |
|     w -= w_offset;
 | |
|     s_dim1 = *lds;
 | |
|     s_offset = 1 + s_dim1 * 1;
 | |
|     s -= s_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     one = 1.f;
 | |
|     zero = 0.f;
 | |
| 
 | |
| /*    Test the input arguments */
 | |
| 
 | |
|     wntres = lsame_(jobr, "R");
 | |
|     sccolx = lsame_(jobs, "S") || lsame_(jobs, "C");
 | |
|     sccoly = lsame_(jobs, "Y");
 | |
|     wntvec = lsame_(jobz, "V");
 | |
|     wntref = lsame_(jobf, "R");
 | |
|     wntex = lsame_(jobf, "E");
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1 || *liwork == -1;
 | |
| 
 | |
|     if (! (sccolx || sccoly || lsame_(jobs, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (wntvec || lsame_(jobz, "N") || lsame_(
 | |
| 	    jobz, "F"))) {
 | |
| 	*info = -2;
 | |
|     } else if (! (wntres || lsame_(jobr, "N")) || 
 | |
| 	    wntres && ! wntvec) {
 | |
| 	*info = -3;
 | |
|     } else if (! (wntref || wntex || lsame_(jobf, "N")))
 | |
| 	     {
 | |
| 	*info = -4;
 | |
|     } else if (! (*whtsvd == 1 || *whtsvd == 2 || *whtsvd == 3 || *whtsvd == 
 | |
| 	    4)) {
 | |
| 	*info = -5;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -6;
 | |
|     } else if (*n < 0 || *n > *m) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldx < *m) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldy < *m) {
 | |
| 	*info = -11;
 | |
|     } else if (! (*nrnk == -2 || *nrnk == -1 || *nrnk >= 1 && *nrnk <= *n)) {
 | |
| 	*info = -12;
 | |
|     } else if (*tol < zero || *tol >= one) {
 | |
| 	*info = -13;
 | |
|     } else if (*ldz < *m) {
 | |
| 	*info = -18;
 | |
|     } else if ((wntref || wntex) && *ldb < *m) {
 | |
| 	*info = -21;
 | |
|     } else if (*ldw < *n) {
 | |
| 	*info = -23;
 | |
|     } else if (*lds < *n) {
 | |
| 	*info = -25;
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| /* Compute the minimal and the optimal workspace */
 | |
| /* requirements. Simulate running the code and */
 | |
| /* determine minimal and optimal sizes of the */
 | |
| /* workspace at any moment of the run. */
 | |
| 	if (*n == 0) {
 | |
| /* Quick return. All output except K is void. */
 | |
| /* INFO=1 signals the void input. */
 | |
| /* In case of a workspace query, the default */
 | |
| /* minimal workspace lengths are returned. */
 | |
| 	    if (lquery) {
 | |
| 		iwork[1] = 1;
 | |
| 		work[1] = 2.f;
 | |
| 		work[2] = 2.f;
 | |
| 	    } else {
 | |
| 		*k = 0;
 | |
| 	    }
 | |
| 	    *info = 1;
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	mlwork = f2cmax(2,*n);
 | |
| 	olwork = f2cmax(2,*n);
 | |
| 	iminwr = 1;
 | |
| /*         SELECT CASE ( WHTSVD ) */
 | |
| 	if (*whtsvd == 1) {
 | |
| /* The following is specified as the minimal */
 | |
| /* length of WORK in the definition of SGESVD: */
 | |
| /* MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) */
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 1, i__2 = f2cmin(*m,*n) * 3 + f2cmax(*m,*n), i__1 = f2cmax(i__1,
 | |
| 		    i__2), i__2 = f2cmin(*m,*n) * 5;
 | |
| 	    mwrsvd = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mlwork, i__2 = *n + mwrsvd;
 | |
| 	    mlwork = f2cmax(i__1,i__2);
 | |
| 	    if (lquery) {
 | |
| 		sgesvd_("O", "S", m, n, &x[x_offset], ldx, &work[1], &b[
 | |
| 			b_offset], ldb, &w[w_offset], ldw, rdummy, &c_n1, &
 | |
| 			info1);
 | |
| /* Computing MAX */
 | |
| 		i__1 = mwrsvd, i__2 = (integer) rdummy[0];
 | |
| 		lwrsvd = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = olwork, i__2 = *n + lwrsvd;
 | |
| 		olwork = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	} else if (*whtsvd == 2) {
 | |
| /* The following is specified as the minimal */
 | |
| /* length of WORK in the definition of SGESDD: */
 | |
| /* MWRSDD = 3*MIN(M,N)*MIN(M,N) + */
 | |
| /* MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) ) */
 | |
| /* IMINWR = 8*MIN(M,N) */
 | |
| /* Computing MAX */
 | |
| 	    i__1 = f2cmax(*m,*n), i__2 = f2cmin(*m,*n) * 5 * f2cmin(*m,*n) + (f2cmin(*m,*
 | |
| 		    n) << 2);
 | |
| 	    mwrsdd = f2cmin(*m,*n) * 3 * f2cmin(*m,*n) + f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mlwork, i__2 = *n + mwrsdd;
 | |
| 	    mlwork = f2cmax(i__1,i__2);
 | |
| 	    iminwr = f2cmin(*m,*n) << 3;
 | |
| 	    if (lquery) {
 | |
| 		sgesdd_("O", m, n, &x[x_offset], ldx, &work[1], &b[b_offset], 
 | |
| 			ldb, &w[w_offset], ldw, rdummy, &c_n1, &iwork[1], &
 | |
| 			info1);
 | |
| /* Computing MAX */
 | |
| 		i__1 = mwrsdd, i__2 = (integer) rdummy[0];
 | |
| 		lwrsdd = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = olwork, i__2 = *n + lwrsdd;
 | |
| 		olwork = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	} else if (*whtsvd == 3) {
 | |
| /* LWQP3 = 3*N+1 */
 | |
| /* LWORQ = MAX(N, 1) */
 | |
| /* MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) */
 | |
| /* MWRSVQ = N + MAX( LWQP3, MWRSVD, LWORQ )+ MAX(M,2) */
 | |
| /* MLWORK = N + MWRSVQ */
 | |
| /* IMINWR = M+N-1 */
 | |
| 	    sgesvdq_("H", "P", "N", "R", "R", m, n, &x[x_offset], ldx, &work[
 | |
| 		    1], &z__[z_offset], ldz, &w[w_offset], ldw, &numrnk, &
 | |
| 		    iwork[1], &c_n1, rdummy, &c_n1, rdummy2, &c_n1, &info1);
 | |
| 	    iminwr = iwork[1];
 | |
| 	    mwrsvq = (integer) rdummy[1];
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mlwork, i__2 = *n + mwrsvq + (integer) rdummy2[0];
 | |
| 	    mlwork = f2cmax(i__1,i__2);
 | |
| 	    if (lquery) {
 | |
| 		lwrsvq = (integer) rdummy[0];
 | |
| /* Computing MAX */
 | |
| 		i__1 = olwork, i__2 = *n + lwrsvq + (integer) rdummy2[0];
 | |
| 		olwork = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	} else if (*whtsvd == 4) {
 | |
| 	    *(unsigned char *)jsvopt = 'J';
 | |
| /* MWRSVJ = MAX( 7, 2*M+N, 6*N+2*N*N )! for JSVOPT='V' */
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 7, i__2 = (*m << 1) + *n, i__1 = f2cmax(i__1,i__2), i__2 = (*
 | |
| 		    n << 2) + *n * *n, i__1 = f2cmax(i__1,i__2), i__2 = (*n << 1)
 | |
| 		     + *n * *n + 6;
 | |
| 	    mwrsvj = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mlwork, i__2 = *n + mwrsvj;
 | |
| 	    mlwork = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 3, i__2 = *m + *n * 3;
 | |
| 	    iminwr = f2cmax(i__1,i__2);
 | |
| 	    if (lquery) {
 | |
| /* Computing MAX */
 | |
| 		i__1 = olwork, i__2 = *n + mwrsvj;
 | |
| 		olwork = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	}
 | |
| /*         END SELECT */
 | |
| 	if (wntvec || wntex || lsame_(jobz, "F")) {
 | |
| 	    *(unsigned char *)jobzl = 'V';
 | |
| 	} else {
 | |
| 	    *(unsigned char *)jobzl = 'N';
 | |
| 	}
 | |
| /* Workspace calculation to the SGEEV call */
 | |
| 	if (lsame_(jobzl, "V")) {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 1, i__2 = *n << 2;
 | |
| 	    mwrkev = f2cmax(i__1,i__2);
 | |
| 	} else {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 1, i__2 = *n * 3;
 | |
| 	    mwrkev = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| /* Computing MAX */
 | |
| 	i__1 = mlwork, i__2 = *n + mwrkev;
 | |
| 	mlwork = f2cmax(i__1,i__2);
 | |
| 	if (lquery) {
 | |
| 	    sgeev_("N", jobzl, n, &s[s_offset], lds, &reig[1], &imeig[1], &w[
 | |
| 		    w_offset], ldw, &w[w_offset], ldw, rdummy, &c_n1, &info1);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = mwrkev, i__2 = (integer) rdummy[0];
 | |
| 	    lwrkev = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = olwork, i__2 = *n + lwrkev;
 | |
| 	    olwork = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 
 | |
| 	if (*liwork < iminwr && ! lquery) {
 | |
| 	    *info = -29;
 | |
| 	}
 | |
| 	if (*lwork < mlwork && ! lquery) {
 | |
| 	    *info = -27;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGEDMD", &i__1);
 | |
| 	return 0;
 | |
|     } else if (lquery) {
 | |
| /*     Return minimal and optimal workspace sizes */
 | |
| 	iwork[1] = iminwr;
 | |
| 	work[1] = (real) mlwork;
 | |
| 	work[2] = (real) olwork;
 | |
| 	return 0;
 | |
|     }
 | |
| /* ............................................................ */
 | |
| 
 | |
|     ofl = slamch_("O");
 | |
|     small = slamch_("S");
 | |
|     badxy = FALSE_;
 | |
| 
 | |
| /*     <1> Optional scaling of the snapshots (columns of X, Y) */
 | |
| /*     ========================================================== */
 | |
|     if (sccolx) {
 | |
| /* The columns of X will be normalized. */
 | |
| /* To prevent overflows, the column norms of X are */
 | |
| /* carefully computed using SLASSQ. */
 | |
| 	*k = 0;
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /* WORK(i) = DNRM2( M, X(1,i), 1 ) */
 | |
| 	    scale = zero;
 | |
| 	    slassq_(m, &x[i__ * x_dim1 + 1], &c__1, &scale, &ssum);
 | |
| 	    if (sisnan_(&scale) || sisnan_(&ssum)) {
 | |
| 		*k = 0;
 | |
| 		*info = -8;
 | |
| 		i__2 = -(*info);
 | |
| 		xerbla_("SGEDMD", &i__2);
 | |
| 	    }
 | |
| 	    if (scale != zero && ssum != zero) {
 | |
| 		rootsc = sqrt(ssum);
 | |
| 		if (scale >= ofl / rootsc) {
 | |
| /*                 Norm of X(:,i) overflows. First, X(:,i) */
 | |
| /*                 is scaled by */
 | |
| /*                 ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. */
 | |
| /*                 Next, the norm of X(:,i) is stored without */
 | |
| /*                 overflow as WORK(i) = - SCALE * (ROOTSC/M), */
 | |
| /*                 the minus sign indicating the 1/M factor. */
 | |
| /*                 Scaling is performed without overflow, and */
 | |
| /*                 underflow may occur in the smallest entries */
 | |
| /*                 of X(:,i). The relative backward and forward */
 | |
| /*                 errors are small in the ell_2 norm. */
 | |
| 		    r__1 = one / rootsc;
 | |
| 		    slascl_("G", &c__0, &c__0, &scale, &r__1, m, &c__1, &x[
 | |
| 			    i__ * x_dim1 + 1], m, &info2);
 | |
| 		    work[i__] = -scale * (rootsc / (real) (*m));
 | |
| 		} else {
 | |
| /*                 X(:,i) will be scaled to unit 2-norm */
 | |
| 		    work[i__] = scale * rootsc;
 | |
| 		    slascl_("G", &c__0, &c__0, &work[i__], &one, m, &c__1, &x[
 | |
| 			    i__ * x_dim1 + 1], m, &info2);
 | |
| /*                 X(1:M,i) = (ONE/WORK(i)) * X(1:M,i)          ! INTRINSIC */
 | |
| /* LAPACK */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		work[i__] = zero;
 | |
| 		++(*k);
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*k == *n) {
 | |
| /* All columns of X are zero. Return error code -8. */
 | |
| /* (the 8th input variable had an illegal value) */
 | |
| 	    *k = 0;
 | |
| 	    *info = -8;
 | |
| 	    i__1 = -(*info);
 | |
| 	    xerbla_("SGEDMD", &i__1);
 | |
| 	    return 0;
 | |
| 	}
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /*           Now, apply the same scaling to the columns of Y. */
 | |
| 	    if (work[i__] > zero) {
 | |
| 		r__1 = one / work[i__];
 | |
| 		sscal_(m, &r__1, &y[i__ * y_dim1 + 1], &c__1);
 | |
| /*               Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i)      ! INTRINSIC */
 | |
| /* BLAS CALL */
 | |
| 	    } else if (work[i__] < zero) {
 | |
| 		r__1 = -work[i__];
 | |
| 		r__2 = one / (real) (*m);
 | |
| 		slascl_("G", &c__0, &c__0, &r__1, &r__2, m, &c__1, &y[i__ * 
 | |
| 			y_dim1 + 1], m, &info2);
 | |
| /* LAPACK CA */
 | |
| 	    } else if (y[isamax_(m, &y[i__ * y_dim1 + 1], &c__1) + i__ * 
 | |
| 		    y_dim1] != zero) {
 | |
| /*               X(:,i) is zero vector. For consistency, */
 | |
| /*               Y(:,i) should also be zero. If Y(:,i) is not */
 | |
| /*               zero, then the data might be inconsistent or */
 | |
| /*               corrupted. If JOBS == 'C', Y(:,i) is set to */
 | |
| /*               zero and a warning flag is raised. */
 | |
| /*               The computation continues but the */
 | |
| /*               situation will be reported in the output. */
 | |
| 		badxy = TRUE_;
 | |
| 		if (lsame_(jobs, "C")) {
 | |
| 		    sscal_(m, &zero, &y[i__ * y_dim1 + 1], &c__1);
 | |
| 		}
 | |
| /* BLAS CALL */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (sccoly) {
 | |
| /* The columns of Y will be normalized. */
 | |
| /* To prevent overflows, the column norms of Y are */
 | |
| /* carefully computed using SLASSQ. */
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /* WORK(i) = DNRM2( M, Y(1,i), 1 ) */
 | |
| 	    scale = zero;
 | |
| 	    slassq_(m, &y[i__ * y_dim1 + 1], &c__1, &scale, &ssum);
 | |
| 	    if (sisnan_(&scale) || sisnan_(&ssum)) {
 | |
| 		*k = 0;
 | |
| 		*info = -10;
 | |
| 		i__2 = -(*info);
 | |
| 		xerbla_("SGEDMD", &i__2);
 | |
| 	    }
 | |
| 	    if (scale != zero && ssum != zero) {
 | |
| 		rootsc = sqrt(ssum);
 | |
| 		if (scale >= ofl / rootsc) {
 | |
| /*                 Norm of Y(:,i) overflows. First, Y(:,i) */
 | |
| /*                 is scaled by */
 | |
| /*                 ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. */
 | |
| /*                 Next, the norm of Y(:,i) is stored without */
 | |
| /*                 overflow as WORK(i) = - SCALE * (ROOTSC/M), */
 | |
| /*                 the minus sign indicating the 1/M factor. */
 | |
| /*                 Scaling is performed without overflow, and */
 | |
| /*                 underflow may occur in the smallest entries */
 | |
| /*                 of Y(:,i). The relative backward and forward */
 | |
| /*                 errors are small in the ell_2 norm. */
 | |
| 		    r__1 = one / rootsc;
 | |
| 		    slascl_("G", &c__0, &c__0, &scale, &r__1, m, &c__1, &y[
 | |
| 			    i__ * y_dim1 + 1], m, &info2);
 | |
| 		    work[i__] = -scale * (rootsc / (real) (*m));
 | |
| 		} else {
 | |
| /*                 X(:,i) will be scaled to unit 2-norm */
 | |
| 		    work[i__] = scale * rootsc;
 | |
| 		    slascl_("G", &c__0, &c__0, &work[i__], &one, m, &c__1, &y[
 | |
| 			    i__ * y_dim1 + 1], m, &info2);
 | |
| /*                 Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i)          ! INTRINSIC */
 | |
| /* LAPACK */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		work[i__] = zero;
 | |
| 	    }
 | |
| 	}
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| /*           Now, apply the same scaling to the columns of X. */
 | |
| 	    if (work[i__] > zero) {
 | |
| 		r__1 = one / work[i__];
 | |
| 		sscal_(m, &r__1, &x[i__ * x_dim1 + 1], &c__1);
 | |
| /*               X(1:M,i) = (ONE/WORK(i)) * X(1:M,i)      ! INTRINSIC */
 | |
| /* BLAS CALL */
 | |
| 	    } else if (work[i__] < zero) {
 | |
| 		r__1 = -work[i__];
 | |
| 		r__2 = one / (real) (*m);
 | |
| 		slascl_("G", &c__0, &c__0, &r__1, &r__2, m, &c__1, &x[i__ * 
 | |
| 			x_dim1 + 1], m, &info2);
 | |
| /* LAPACK CA */
 | |
| 	    } else if (x[isamax_(m, &x[i__ * x_dim1 + 1], &c__1) + i__ * 
 | |
| 		    x_dim1] != zero) {
 | |
| /*               Y(:,i) is zero vector.  If X(:,i) is not */
 | |
| /*               zero, then a warning flag is raised. */
 | |
| /*               The computation continues but the */
 | |
| /*               situation will be reported in the output. */
 | |
| 		badxy = TRUE_;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     <2> SVD of the data snapshot matrix X. */
 | |
| /*     ===================================== */
 | |
| /*     The left singular vectors are stored in the array X. */
 | |
| /*     The right singular vectors are in the array W. */
 | |
| /*     The array W will later on contain the eigenvectors */
 | |
| /*     of a Rayleigh quotient. */
 | |
|     numrnk = *n;
 | |
| /*      SELECT CASE ( WHTSVD ) */
 | |
|     if (*whtsvd == 1) {
 | |
| 	i__1 = *lwork - *n;
 | |
| 	sgesvd_("O", "S", m, n, &x[x_offset], ldx, &work[1], &b[b_offset], 
 | |
| 		ldb, &w[w_offset], ldw, &work[*n + 1], &i__1, &info1);
 | |
| /* LAPACK CAL */
 | |
| 	*(unsigned char *)t_or_n__ = 'T';
 | |
|     } else if (*whtsvd == 2) {
 | |
| 	i__1 = *lwork - *n;
 | |
| 	sgesdd_("O", m, n, &x[x_offset], ldx, &work[1], &b[b_offset], ldb, &w[
 | |
| 		w_offset], ldw, &work[*n + 1], &i__1, &iwork[1], &info1);
 | |
| /* LAPACK CAL */
 | |
| 	*(unsigned char *)t_or_n__ = 'T';
 | |
|     } else if (*whtsvd == 3) {
 | |
| 	i__1 = *lwork - *n - f2cmax(2,*m);
 | |
| 	i__2 = f2cmax(2,*m);
 | |
| 	sgesvdq_("H", "P", "N", "R", "R", m, n, &x[x_offset], ldx, &work[1], &
 | |
| 		z__[z_offset], ldz, &w[w_offset], ldw, &numrnk, &iwork[1], 
 | |
| 		liwork, &work[*n + f2cmax(2,*m) + 1], &i__1, &work[*n + 1], &
 | |
| 		i__2, &info1);
 | |
| 
 | |
| 	slacpy_("A", m, &numrnk, &z__[z_offset], ldz, &x[x_offset], ldx);
 | |
| /* LAPACK C */
 | |
| 	*(unsigned char *)t_or_n__ = 'T';
 | |
|     } else if (*whtsvd == 4) {
 | |
| 	i__1 = *lwork - *n;
 | |
| 	sgejsv_("F", "U", jsvopt, "N", "N", "P", m, n, &x[x_offset], ldx, &
 | |
| 		work[1], &z__[z_offset], ldz, &w[w_offset], ldw, &work[*n + 1]
 | |
| 		, &i__1, &iwork[1], &info1);
 | |
| /* LAPACK CALL */
 | |
| 	slacpy_("A", m, n, &z__[z_offset], ldz, &x[x_offset], ldx);
 | |
| /* LAPACK CALL */
 | |
| 	*(unsigned char *)t_or_n__ = 'N';
 | |
| 	xscl1 = work[*n + 1];
 | |
| 	xscl2 = work[*n + 2];
 | |
| 	if (xscl1 != xscl2) {
 | |
| /* This is an exceptional situation. If the */
 | |
| /* data matrices are not scaled and the */
 | |
| /* largest singular value of X overflows. */
 | |
| /* In that case SGEJSV can return the SVD */
 | |
| /* in scaled form. The scaling factor can be used */
 | |
| /* to rescale the data (X and Y). */
 | |
| 	    slascl_("G", &c__0, &c__0, &xscl1, &xscl2, m, n, &y[y_offset], 
 | |
| 		    ldy, &info2);
 | |
| 	}
 | |
| /*      END SELECT */
 | |
|     }
 | |
| 
 | |
|     if (info1 > 0) {
 | |
| /* The SVD selected subroutine did not converge. */
 | |
| /* Return with an error code. */
 | |
| 	*info = 2;
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (work[1] == zero) {
 | |
| /* The largest computed singular value of (scaled) */
 | |
| /* X is zero. Return error code -8 */
 | |
| /* (the 8th input variable had an illegal value). */
 | |
| 	*k = 0;
 | |
| 	*info = -8;
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGEDMD", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /* <3> Determine the numerical rank of the data */
 | |
| /*    snapshots matrix X. This depends on the */
 | |
| /*    parameters NRNK and TOL. */
 | |
| /*      SELECT CASE ( NRNK ) */
 | |
|     if (*nrnk == -1) {
 | |
| 	*k = 1;
 | |
| 	i__1 = numrnk;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	    if (work[i__] <= work[1] * *tol || work[i__] <= small) {
 | |
| 		myexit_();
 | |
| 	    }
 | |
| 	    ++(*k);
 | |
| 	}
 | |
|     } else if (*nrnk == -2) {
 | |
| 	*k = 1;
 | |
| 	i__1 = numrnk - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    if (work[i__ + 1] <= work[i__] * *tol || work[i__] <= small) {
 | |
| 		myexit_();
 | |
| 	    }
 | |
| 	    ++(*k);
 | |
| 	}
 | |
|     } else {
 | |
| 	*k = 1;
 | |
| 	i__1 = *nrnk;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	    if (work[i__] <= small) {
 | |
| 		myexit_();
 | |
| 	    }
 | |
| 	    ++(*k);
 | |
| 	}
 | |
| /*          END SELECT */
 | |
|     }
 | |
| /*   Now, U = X(1:M,1:K) is the SVD/POD basis for the */
 | |
| /*   snapshot data in the input matrix X. */
 | |
| /* <4> Compute the Rayleigh quotient S = U^T * A * U. */
 | |
| /*    Depending on the requested outputs, the computation */
 | |
| /*    is organized to compute additional auxiliary */
 | |
| /*    matrices (for the residuals and refinements). */
 | |
| 
 | |
| /*    In all formulas below, we need V_k*Sigma_k^(-1) */
 | |
| /*    where either V_k is in W(1:N,1:K), or V_k^T is in */
 | |
| /*    W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). */
 | |
|     if (lsame_(t_or_n__, "N")) {
 | |
| 	i__1 = *k;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    r__1 = one / work[i__];
 | |
| 	    sscal_(n, &r__1, &w[i__ * w_dim1 + 1], &c__1);
 | |
| /* W(1:N,i) = (ONE/WORK(i)) * W(1:N,i)      ! INTRINSIC */
 | |
| /* BLAS CALL */
 | |
| 	}
 | |
|     } else {
 | |
| /* This non-unit stride access is due to the fact */
 | |
| /* that SGESVD, SGESVDQ and SGESDD return the */
 | |
| /* transposed matrix of the right singular vectors. */
 | |
| /* DO i = 1, K */
 | |
| /* CALL SSCAL( N, ONE/WORK(i), W(i,1), LDW )    ! BLAS CALL */
 | |
| /* ! W(i,1:N) = (ONE/WORK(i)) * W(i,1:N)      ! INTRINSIC */
 | |
| /* END DO */
 | |
| 	i__1 = *k;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    work[*n + i__] = one / work[i__];
 | |
| 	}
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = *k;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		w[i__ + j * w_dim1] = work[*n + i__] * w[i__ + j * w_dim1];
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (wntref) {
 | |
| 
 | |
| /* Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) */
 | |
| /* for computing the refined Ritz vectors */
 | |
| /* (optionally, outside SGEDMD). */
 | |
| 	sgemm_("N", t_or_n__, m, k, n, &one, &y[y_offset], ldy, &w[w_offset], 
 | |
| 		ldw, &zero, &z__[z_offset], ldz);
 | |
| /* Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N)))  ! INTRI */
 | |
| /* Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K))             ! INTRI */
 | |
| 
 | |
| /* At this point Z contains */
 | |
| /* A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and */
 | |
| /* this is needed for computing the residuals. */
 | |
| /* This matrix is  returned in the array B and */
 | |
| /* it can be used to compute refined Ritz vectors. */
 | |
| /* BLAS */
 | |
| 	slacpy_("A", m, k, &z__[z_offset], ldz, &b[b_offset], ldb);
 | |
| /* B(1:M,1:K) = Z(1:M,1:K)                  ! INTRINSIC */
 | |
| /* BLAS CALL */
 | |
| 	sgemm_("T", "N", k, k, m, &one, &x[x_offset], ldx, &z__[z_offset], 
 | |
| 		ldz, &zero, &s[s_offset], lds);
 | |
| /* S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRI */
 | |
| /* At this point S = U^T * A * U is the Rayleigh quotient. */
 | |
| /* BLAS */
 | |
|     } else {
 | |
| /* A * U(:,1:K) is not explicitly needed and the */
 | |
| /* computation is organized differently. The Rayleigh */
 | |
| /* quotient is computed more efficiently. */
 | |
| 	sgemm_("T", "N", k, n, m, &one, &x[x_offset], ldx, &y[y_offset], ldy, 
 | |
| 		&zero, &z__[z_offset], ldz);
 | |
| /* Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) )  ! IN */
 | |
| /* In the two SGEMM calls here, can use K for LDZ */
 | |
| /* B */
 | |
| 	sgemm_("N", t_or_n__, k, k, n, &one, &z__[z_offset], ldz, &w[w_offset]
 | |
| 		, ldw, &zero, &s[s_offset], lds);
 | |
| /* S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRIN */
 | |
| /* S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K)))          ! INTRIN */
 | |
| /* At this point S = U^T * A * U is the Rayleigh quotient. */
 | |
| /* If the residuals are requested, save scaled V_k into Z. */
 | |
| /* Recall that V_k or V_k^T is stored in W. */
 | |
| /* BLAS */
 | |
| 	if (wntres || wntex) {
 | |
| 	    if (lsame_(t_or_n__, "N")) {
 | |
| 		slacpy_("A", n, k, &w[w_offset], ldw, &z__[z_offset], ldz);
 | |
| 	    } else {
 | |
| 		slacpy_("A", k, n, &w[w_offset], ldw, &z__[z_offset], ldz);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /* <5> Compute the Ritz values and (if requested) the */
 | |
| /*   right eigenvectors of the Rayleigh quotient. */
 | |
| 
 | |
|     i__1 = *lwork - *n;
 | |
|     sgeev_("N", jobzl, k, &s[s_offset], lds, &reig[1], &imeig[1], &w[w_offset]
 | |
| 	    , ldw, &w[w_offset], ldw, &work[*n + 1], &i__1, &info1);
 | |
| 
 | |
| /* W(1:K,1:K) contains the eigenvectors of the Rayleigh */
 | |
| /* quotient. Even in the case of complex spectrum, all */
 | |
| /* computation is done in real arithmetic. REIG and */
 | |
| /* IMEIG are the real and the imaginary parts of the */
 | |
| /* eigenvalues, so that the spectrum is given as */
 | |
| /* REIG(:) + sqrt(-1)*IMEIG(:). Complex conjugate pairs */
 | |
| /* are listed at consecutive positions. For such a */
 | |
| /* complex conjugate pair of the eigenvalues, the */
 | |
| /* corresponding eigenvectors are also a complex */
 | |
| /* conjugate pair with the real and imaginary parts */
 | |
| /* stored column-wise in W at the corresponding */
 | |
| /* consecutive column indices. See the description of Z. */
 | |
| /* Also, see the description of SGEEV. */
 | |
| /* LAPACK C */
 | |
|     if (info1 > 0) {
 | |
| /* SGEEV failed to compute the eigenvalues and */
 | |
| /* eigenvectors of the Rayleigh quotient. */
 | |
| 	*info = 3;
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /* <6> Compute the eigenvectors (if requested) and, */
 | |
| /* the residuals (if requested). */
 | |
| 
 | |
|     if (wntvec || wntex) {
 | |
| 	if (wntres) {
 | |
| 	    if (wntref) {
 | |
| /* Here, if the refinement is requested, we have */
 | |
| /* A*U(:,1:K) already computed and stored in Z. */
 | |
| /* For the residuals, need Y = A * U(:,1;K) * W. */
 | |
| 		sgemm_("N", "N", m, k, k, &one, &z__[z_offset], ldz, &w[
 | |
| 			w_offset], ldw, &zero, &y[y_offset], ldy);
 | |
| /* Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K)       ! INTRINSIC */
 | |
| /* This frees Z; Y contains A * U(:,1:K) * W. */
 | |
| /* BLAS CALL */
 | |
| 	    } else {
 | |
| /* Compute S = V_k * Sigma_k^(-1) * W, where */
 | |
| /* V_k * Sigma_k^(-1) is stored in Z */
 | |
| 		sgemm_(t_or_n__, "N", n, k, k, &one, &z__[z_offset], ldz, &w[
 | |
| 			w_offset], ldw, &zero, &s[s_offset], lds);
 | |
| /* Then, compute Z = Y * S = */
 | |
| /* = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = */
 | |
| /* = A * U(:,1:K) * W(1:K,1:K) */
 | |
| 		sgemm_("N", "N", m, k, n, &one, &y[y_offset], ldy, &s[
 | |
| 			s_offset], lds, &zero, &z__[z_offset], ldz);
 | |
| /* Save a copy of Z into Y and free Z for holding */
 | |
| /* the Ritz vectors. */
 | |
| 		slacpy_("A", m, k, &z__[z_offset], ldz, &y[y_offset], ldy);
 | |
| 		if (wntex) {
 | |
| 		    slacpy_("A", m, k, &z__[z_offset], ldz, &b[b_offset], ldb);
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (wntex) {
 | |
| /* Compute S = V_k * Sigma_k^(-1) * W, where */
 | |
| /* V_k * Sigma_k^(-1) is stored in Z */
 | |
| 	    sgemm_(t_or_n__, "N", n, k, k, &one, &z__[z_offset], ldz, &w[
 | |
| 		    w_offset], ldw, &zero, &s[s_offset], lds);
 | |
| /* Then, compute Z = Y * S = */
 | |
| /* = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = */
 | |
| /* = A * U(:,1:K) * W(1:K,1:K) */
 | |
| 	    sgemm_("N", "N", m, k, n, &one, &y[y_offset], ldy, &s[s_offset], 
 | |
| 		    lds, &zero, &b[b_offset], ldb);
 | |
| /* The above call replaces the following two calls */
 | |
| /* that were used in the developing-testing phase. */
 | |
| /* CALL SGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, & */
 | |
| /*           LDS, ZERO, Z, LDZ) */
 | |
| /* Save a copy of Z into B and free Z for holding */
 | |
| /* the Ritz vectors. */
 | |
| /* CALL SLACPY( 'A', M, K, Z, LDZ, B, LDB ) */
 | |
| 	}
 | |
| 
 | |
| /* Compute the real form of the Ritz vectors */
 | |
| 	if (wntvec) {
 | |
| 	    sgemm_("N", "N", m, k, k, &one, &x[x_offset], ldx, &w[w_offset], 
 | |
| 		    ldw, &zero, &z__[z_offset], ldz);
 | |
| 	}
 | |
| /* Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K))         ! INTRINSIC */
 | |
| 
 | |
| /* BLAS CALL */
 | |
| 	if (wntres) {
 | |
| 	    i__ = 1;
 | |
| 	    while(i__ <= *k) {
 | |
| 		if (imeig[i__] == zero) {
 | |
| /* have a real eigenvalue with real eigenvector */
 | |
| 		    r__1 = -reig[i__];
 | |
| 		    saxpy_(m, &r__1, &z__[i__ * z_dim1 + 1], &c__1, &y[i__ * 
 | |
| 			    y_dim1 + 1], &c__1);
 | |
| /* Y(1:M,i) = Y(1:M,i) - REIG(i) * Z(1:M,i)            ! */
 | |
| 
 | |
| 		    res[i__] = snrm2_(m, &y[i__ * y_dim1 + 1], &c__1);
 | |
| 		    ++i__;
 | |
| 		} else {
 | |
| /* Have a complex conjugate pair */
 | |
| /* REIG(i) +- sqrt(-1)*IMEIG(i). */
 | |
| /* Since all computation is done in real */
 | |
| /* arithmetic, the formula for the residual */
 | |
| /* is recast for real representation of the */
 | |
| /* complex conjugate eigenpair. See the */
 | |
| /* description of RES. */
 | |
| 		    ab[0] = reig[i__];
 | |
| 		    ab[1] = -imeig[i__];
 | |
| 		    ab[2] = imeig[i__];
 | |
| 		    ab[3] = reig[i__];
 | |
| 		    r__1 = -one;
 | |
| 		    sgemm_("N", "N", m, &c__2, &c__2, &r__1, &z__[i__ * 
 | |
| 			    z_dim1 + 1], ldz, ab, &c__2, &one, &y[i__ * 
 | |
| 			    y_dim1 + 1], ldy);
 | |
| /* Y(1:M,i:i+1) = Y(1:M,i:i+1) - Z(1:M,i:i+1) * AB   ! INT */
 | |
| /* BL */
 | |
| 		    res[i__] = slange_("F", m, &c__2, &y[i__ * y_dim1 + 1], 
 | |
| 			    ldy, &work[*n + 1]);
 | |
| /* LA */
 | |
| 		    res[i__ + 1] = res[i__];
 | |
| 		    i__ += 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*whtsvd == 4) {
 | |
| 	work[*n + 1] = xscl1;
 | |
| 	work[*n + 2] = xscl2;
 | |
|     }
 | |
| 
 | |
| /*     Successful exit. */
 | |
|     if (! badxy) {
 | |
| 	*info = 0;
 | |
|     } else {
 | |
| /* A warning on possible data inconsistency. */
 | |
| /* This should be a rare event. */
 | |
| 	*info = 4;
 | |
|     }
 | |
| /* ............................................................ */
 | |
|     return 0;
 | |
| /*     ...... */
 | |
| } /* sgedmd_ */
 | |
| 
 |