1025 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1025 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief \b DSTEIN */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DSTEIN + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstein.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstein.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstein.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, */
 | |
| /*                          IWORK, IFAIL, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, LDZ, M, N */
 | |
| /*       INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ), */
 | |
| /*      $                   IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DSTEIN computes the eigenvectors of a real symmetric tridiagonal */
 | |
| /* > matrix T corresponding to specified eigenvalues, using inverse */
 | |
| /* > iteration. */
 | |
| /* > */
 | |
| /* > The maximum number of iterations allowed for each eigenvector is */
 | |
| /* > specified by an internal parameter MAXITS (currently set to 5). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The n diagonal elements of the tridiagonal matrix T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is DOUBLE PRECISION array, dimension (N-1) */
 | |
| /* >          The (n-1) subdiagonal elements of the tridiagonal matrix */
 | |
| /* >          T, in elements 1 to N-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of eigenvectors to be found.  0 <= M <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The first M elements of W contain the eigenvalues for */
 | |
| /* >          which eigenvectors are to be computed.  The eigenvalues */
 | |
| /* >          should be grouped by split-off block and ordered from */
 | |
| /* >          smallest to largest within the block.  ( The output array */
 | |
| /* >          W from DSTEBZ with ORDER = 'B' is expected here. ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IBLOCK */
 | |
| /* > \verbatim */
 | |
| /* >          IBLOCK is INTEGER array, dimension (N) */
 | |
| /* >          The submatrix indices associated with the corresponding */
 | |
| /* >          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
 | |
| /* >          the first submatrix from the top, =2 if W(i) belongs to */
 | |
| /* >          the second submatrix, etc.  ( The output array IBLOCK */
 | |
| /* >          from DSTEBZ is expected here. ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ISPLIT */
 | |
| /* > \verbatim */
 | |
| /* >          ISPLIT is INTEGER array, dimension (N) */
 | |
| /* >          The splitting points, at which T breaks up into submatrices. */
 | |
| /* >          The first submatrix consists of rows/columns 1 to */
 | |
| /* >          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
 | |
| /* >          through ISPLIT( 2 ), etc. */
 | |
| /* >          ( The output array ISPLIT from DSTEBZ is expected here. ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension (LDZ, M) */
 | |
| /* >          The computed eigenvectors.  The eigenvector associated */
 | |
| /* >          with the eigenvalue W(i) is stored in the i-th column of */
 | |
| /* >          Z.  Any vector which fails to converge is set to its current */
 | |
| /* >          iterate after MAXITS iterations. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z.  LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (5*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IFAIL */
 | |
| /* > \verbatim */
 | |
| /* >          IFAIL is INTEGER array, dimension (M) */
 | |
| /* >          On normal exit, all elements of IFAIL are zero. */
 | |
| /* >          If one or more eigenvectors fail to converge after */
 | |
| /* >          MAXITS iterations, then their indices are stored in */
 | |
| /* >          array IFAIL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit. */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0: if INFO = i, then i eigenvectors failed to converge */
 | |
| /* >               in MAXITS iterations.  Their indices are stored in */
 | |
| /* >               array IFAIL. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Internal Parameters: */
 | |
| /*  ========================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* >  MAXITS  INTEGER, default = 5 */
 | |
| /* >          The maximum number of iterations performed. */
 | |
| /* > */
 | |
| /* >  EXTRA   INTEGER, default = 2 */
 | |
| /* >          The number of iterations performed after norm growth */
 | |
| /* >          criterion is satisfied, should be at least 1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dstein_(integer *n, doublereal *d__, doublereal *e, 
 | |
| 	integer *m, doublereal *w, integer *iblock, integer *isplit, 
 | |
| 	doublereal *z__, integer *ldz, doublereal *work, integer *iwork, 
 | |
| 	integer *ifail, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer z_dim1, z_offset, i__1, i__2, i__3;
 | |
|     doublereal d__1, d__2, d__3, d__4, d__5;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer jblk, nblk;
 | |
|     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     integer jmax;
 | |
|     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | |
|     integer i__, j;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     integer iseed[4], gpind, iinfo;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer b1;
 | |
|     extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *);
 | |
|     integer j1;
 | |
|     doublereal ortol;
 | |
|     integer indrv1, indrv2, indrv3, indrv4, indrv5, bn;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     extern /* Subroutine */ void dlagtf_(integer *, doublereal *, doublereal *,
 | |
| 	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
 | |
| 	    , integer *);
 | |
|     doublereal xj;
 | |
|     extern integer idamax_(integer *, doublereal *, integer *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void dlagts_(
 | |
| 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, integer *);
 | |
|     integer nrmchk;
 | |
|     extern /* Subroutine */ void dlarnv_(integer *, integer *, integer *, 
 | |
| 	    doublereal *);
 | |
|     integer blksiz;
 | |
|     doublereal onenrm, dtpcrt, pertol, scl, eps, sep, nrm, tol;
 | |
|     integer its;
 | |
|     doublereal xjm, ztr, eps1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --e;
 | |
|     --w;
 | |
|     --iblock;
 | |
|     --isplit;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
|     --ifail;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     i__1 = *m;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	ifail[i__] = 0;
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*m < 0 || *m > *n) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldz < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else {
 | |
| 	i__1 = *m;
 | |
| 	for (j = 2; j <= i__1; ++j) {
 | |
| 	    if (iblock[j] < iblock[j - 1]) {
 | |
| 		*info = -6;
 | |
| 		goto L30;
 | |
| 	    }
 | |
| 	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
 | |
| 		*info = -5;
 | |
| 		goto L30;
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| L30:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSTEIN", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0 || *m == 0) {
 | |
| 	return;
 | |
|     } else if (*n == 1) {
 | |
| 	z__[z_dim1 + 1] = 1.;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants. */
 | |
| 
 | |
|     eps = dlamch_("Precision");
 | |
| 
 | |
| /*     Initialize seed for random number generator DLARNV. */
 | |
| 
 | |
|     for (i__ = 1; i__ <= 4; ++i__) {
 | |
| 	iseed[i__ - 1] = 1;
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
| /*     Initialize pointers. */
 | |
| 
 | |
|     indrv1 = 0;
 | |
|     indrv2 = indrv1 + *n;
 | |
|     indrv3 = indrv2 + *n;
 | |
|     indrv4 = indrv3 + *n;
 | |
|     indrv5 = indrv4 + *n;
 | |
| 
 | |
| /*     Compute eigenvectors of matrix blocks. */
 | |
| 
 | |
|     j1 = 1;
 | |
|     i__1 = iblock[*m];
 | |
|     for (nblk = 1; nblk <= i__1; ++nblk) {
 | |
| 
 | |
| /*        Find starting and ending indices of block nblk. */
 | |
| 
 | |
| 	if (nblk == 1) {
 | |
| 	    b1 = 1;
 | |
| 	} else {
 | |
| 	    b1 = isplit[nblk - 1] + 1;
 | |
| 	}
 | |
| 	bn = isplit[nblk];
 | |
| 	blksiz = bn - b1 + 1;
 | |
| 	if (blksiz == 1) {
 | |
| 	    goto L60;
 | |
| 	}
 | |
| 	gpind = j1;
 | |
| 
 | |
| /*        Compute reorthogonalization criterion and stopping criterion. */
 | |
| 
 | |
| 	onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));
 | |
| /* Computing MAX */
 | |
| 	d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],
 | |
| 		 abs(d__2));
 | |
| 	onenrm = f2cmax(d__3,d__4);
 | |
| 	i__2 = bn - 1;
 | |
| 	for (i__ = b1 + 1; i__ <= i__2; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	    d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
 | |
| 		    i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));
 | |
| 	    onenrm = f2cmax(d__4,d__5);
 | |
| /* L50: */
 | |
| 	}
 | |
| 	ortol = onenrm * .001;
 | |
| 
 | |
| 	dtpcrt = sqrt(.1 / blksiz);
 | |
| 
 | |
| /*        Loop through eigenvalues of block nblk. */
 | |
| 
 | |
| L60:
 | |
| 	jblk = 0;
 | |
| 	i__2 = *m;
 | |
| 	for (j = j1; j <= i__2; ++j) {
 | |
| 	    if (iblock[j] != nblk) {
 | |
| 		j1 = j;
 | |
| 		goto L160;
 | |
| 	    }
 | |
| 	    ++jblk;
 | |
| 	    xj = w[j];
 | |
| 
 | |
| /*           Skip all the work if the block size is one. */
 | |
| 
 | |
| 	    if (blksiz == 1) {
 | |
| 		work[indrv1 + 1] = 1.;
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 
 | |
| /*           If eigenvalues j and j-1 are too close, add a relatively */
 | |
| /*           small perturbation. */
 | |
| 
 | |
| 	    if (jblk > 1) {
 | |
| 		eps1 = (d__1 = eps * xj, abs(d__1));
 | |
| 		pertol = eps1 * 10.;
 | |
| 		sep = xj - xjm;
 | |
| 		if (sep < pertol) {
 | |
| 		    xj = xjm + pertol;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    its = 0;
 | |
| 	    nrmchk = 0;
 | |
| 
 | |
| /*           Get random starting vector. */
 | |
| 
 | |
| 	    dlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
 | |
| 
 | |
| /*           Copy the matrix T so it won't be destroyed in factorization. */
 | |
| 
 | |
| 	    dcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
 | |
| 	    i__3 = blksiz - 1;
 | |
| 	    dcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
 | |
| 	    i__3 = blksiz - 1;
 | |
| 	    dcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
 | |
| 
 | |
| /*           Compute LU factors with partial pivoting  ( PT = LU ) */
 | |
| 
 | |
| 	    tol = 0.;
 | |
| 	    dlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
 | |
| 		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
 | |
| 
 | |
| /*           Update iteration count. */
 | |
| 
 | |
| L70:
 | |
| 	    ++its;
 | |
| 	    if (its > 5) {
 | |
| 		goto L100;
 | |
| 	    }
 | |
| 
 | |
| /*           Normalize and scale the righthand side vector Pb. */
 | |
| 
 | |
| 	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | |
| /* Computing MAX */
 | |
| 	    d__3 = eps, d__4 = (d__1 = work[indrv4 + blksiz], abs(d__1));
 | |
| 	    scl = blksiz * onenrm * f2cmax(d__3,d__4) / (d__2 = work[indrv1 + 
 | |
| 		    jmax], abs(d__2));
 | |
| 	    dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
 | |
| 
 | |
| /*           Solve the system LU = Pb. */
 | |
| 
 | |
| 	    dlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
 | |
| 		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
 | |
| 		    indrv1 + 1], &tol, &iinfo);
 | |
| 
 | |
| /*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
 | |
| /*           close enough. */
 | |
| 
 | |
| 	    if (jblk == 1) {
 | |
| 		goto L90;
 | |
| 	    }
 | |
| 	    if ((d__1 = xj - xjm, abs(d__1)) > ortol) {
 | |
| 		gpind = j;
 | |
| 	    }
 | |
| 	    if (gpind != j) {
 | |
| 		i__3 = j - 1;
 | |
| 		for (i__ = gpind; i__ <= i__3; ++i__) {
 | |
| 		    ztr = -ddot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 + 
 | |
| 			    i__ * z_dim1], &c__1);
 | |
| 		    daxpy_(&blksiz, &ztr, &z__[b1 + i__ * z_dim1], &c__1, &
 | |
| 			    work[indrv1 + 1], &c__1);
 | |
| /* L80: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Check the infinity norm of the iterate. */
 | |
| 
 | |
| L90:
 | |
| 	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | |
| 	    nrm = (d__1 = work[indrv1 + jmax], abs(d__1));
 | |
| 
 | |
| /*           Continue for additional iterations after norm reaches */
 | |
| /*           stopping criterion. */
 | |
| 
 | |
| 	    if (nrm < dtpcrt) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 	    ++nrmchk;
 | |
| 	    if (nrmchk < 3) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 
 | |
| 	    goto L110;
 | |
| 
 | |
| /*           If stopping criterion was not satisfied, update info and */
 | |
| /*           store eigenvector number in array ifail. */
 | |
| 
 | |
| L100:
 | |
| 	    ++(*info);
 | |
| 	    ifail[*info] = j;
 | |
| 
 | |
| /*           Accept iterate as jth eigenvector. */
 | |
| 
 | |
| L110:
 | |
| 	    scl = 1. / dnrm2_(&blksiz, &work[indrv1 + 1], &c__1);
 | |
| 	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | |
| 	    if (work[indrv1 + jmax] < 0.) {
 | |
| 		scl = -scl;
 | |
| 	    }
 | |
| 	    dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
 | |
| L120:
 | |
| 	    i__3 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		z__[i__ + j * z_dim1] = 0.;
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	    i__3 = blksiz;
 | |
| 	    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 		z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];
 | |
| /* L140: */
 | |
| 	    }
 | |
| 
 | |
| /*           Save the shift to check eigenvalue spacing at next */
 | |
| /*           iteration. */
 | |
| 
 | |
| 	    xjm = xj;
 | |
| 
 | |
| /* L150: */
 | |
| 	}
 | |
| L160:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of DSTEIN */
 | |
| 
 | |
| } /* dstein_ */
 | |
| 
 |