251 lines
7.2 KiB
Fortran
251 lines
7.2 KiB
Fortran
*> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
*> \htmlonly
|
|
*> Download CLARTG + dependencies
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clartg.f">
|
|
*> [TGZ]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clartg.f">
|
|
*> [ZIP]</a>
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clartg.f">
|
|
*> [TXT]</a>
|
|
*> \endhtmlonly
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CLARTG( F, G, CS, SN, R )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* REAL CS
|
|
* COMPLEX F, G, R, SN
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CLARTG generates a plane rotation so that
|
|
*>
|
|
*> [ CS SN ] [ F ] [ R ]
|
|
*> [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1.
|
|
*> [ -SN CS ] [ G ] [ 0 ]
|
|
*>
|
|
*> This is a faster version of the BLAS1 routine CROTG, except for
|
|
*> the following differences:
|
|
*> F and G are unchanged on return.
|
|
*> If G=0, then CS=1 and SN=0.
|
|
*> If F=0, then CS=0 and SN is chosen so that R is real.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] F
|
|
*> \verbatim
|
|
*> F is COMPLEX
|
|
*> The first component of vector to be rotated.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] G
|
|
*> \verbatim
|
|
*> G is COMPLEX
|
|
*> The second component of vector to be rotated.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] CS
|
|
*> \verbatim
|
|
*> CS is REAL
|
|
*> The cosine of the rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] SN
|
|
*> \verbatim
|
|
*> SN is COMPLEX
|
|
*> The sine of the rotation.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] R
|
|
*> \verbatim
|
|
*> R is COMPLEX
|
|
*> The nonzero component of the rotated vector.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \date December 2016
|
|
*
|
|
*> \ingroup complexOTHERauxiliary
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
|
|
*>
|
|
*> This version has a few statements commented out for thread safety
|
|
*> (machine parameters are computed on each entry). 10 feb 03, SJH.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE CLARTG( F, G, CS, SN, R )
|
|
*
|
|
* -- LAPACK auxiliary routine (version 3.7.0) --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
* December 2016
|
|
*
|
|
* .. Scalar Arguments ..
|
|
REAL CS
|
|
COMPLEX F, G, R, SN
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL TWO, ONE, ZERO
|
|
PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
COMPLEX CZERO
|
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
* LOGICAL FIRST
|
|
INTEGER COUNT, I
|
|
REAL D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
|
|
$ SAFMN2, SAFMX2, SCALE
|
|
COMPLEX FF, FS, GS
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH, SLAPY2
|
|
LOGICAL SISNAN
|
|
EXTERNAL SLAMCH, SLAPY2, SISNAN
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
|
|
$ SQRT
|
|
* ..
|
|
* .. Statement Functions ..
|
|
REAL ABS1, ABSSQ
|
|
* ..
|
|
* .. Statement Function definitions ..
|
|
ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
|
|
ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
SAFMIN = SLAMCH( 'S' )
|
|
EPS = SLAMCH( 'E' )
|
|
SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
|
|
$ LOG( SLAMCH( 'B' ) ) / TWO )
|
|
SAFMX2 = ONE / SAFMN2
|
|
SCALE = MAX( ABS1( F ), ABS1( G ) )
|
|
FS = F
|
|
GS = G
|
|
COUNT = 0
|
|
IF( SCALE.GE.SAFMX2 ) THEN
|
|
10 CONTINUE
|
|
COUNT = COUNT + 1
|
|
FS = FS*SAFMN2
|
|
GS = GS*SAFMN2
|
|
SCALE = SCALE*SAFMN2
|
|
IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20)
|
|
$ GO TO 10
|
|
ELSE IF( SCALE.LE.SAFMN2 ) THEN
|
|
IF( G.EQ.CZERO.OR.SISNAN( ABS( G ) ) ) THEN
|
|
CS = ONE
|
|
SN = CZERO
|
|
R = F
|
|
RETURN
|
|
END IF
|
|
20 CONTINUE
|
|
COUNT = COUNT - 1
|
|
FS = FS*SAFMX2
|
|
GS = GS*SAFMX2
|
|
SCALE = SCALE*SAFMX2
|
|
IF( SCALE.LE.SAFMN2 )
|
|
$ GO TO 20
|
|
END IF
|
|
F2 = ABSSQ( FS )
|
|
G2 = ABSSQ( GS )
|
|
IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
|
|
*
|
|
* This is a rare case: F is very small.
|
|
*
|
|
IF( F.EQ.CZERO ) THEN
|
|
CS = ZERO
|
|
R = SLAPY2( REAL( G ), AIMAG( G ) )
|
|
* Do complex/real division explicitly with two real divisions
|
|
D = SLAPY2( REAL( GS ), AIMAG( GS ) )
|
|
SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
|
|
RETURN
|
|
END IF
|
|
F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
|
|
* G2 and G2S are accurate
|
|
* G2 is at least SAFMIN, and G2S is at least SAFMN2
|
|
G2S = SQRT( G2 )
|
|
* Error in CS from underflow in F2S is at most
|
|
* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
|
|
* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
|
|
* and so CS .lt. sqrt(SAFMIN)
|
|
* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
|
|
* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
|
|
* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
|
|
CS = F2S / G2S
|
|
* Make sure abs(FF) = 1
|
|
* Do complex/real division explicitly with 2 real divisions
|
|
IF( ABS1( F ).GT.ONE ) THEN
|
|
D = SLAPY2( REAL( F ), AIMAG( F ) )
|
|
FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
|
|
ELSE
|
|
DR = SAFMX2*REAL( F )
|
|
DI = SAFMX2*AIMAG( F )
|
|
D = SLAPY2( DR, DI )
|
|
FF = CMPLX( DR / D, DI / D )
|
|
END IF
|
|
SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
|
|
R = CS*F + SN*G
|
|
ELSE
|
|
*
|
|
* This is the most common case.
|
|
* Neither F2 nor F2/G2 are less than SAFMIN
|
|
* F2S cannot overflow, and it is accurate
|
|
*
|
|
F2S = SQRT( ONE+G2 / F2 )
|
|
* Do the F2S(real)*FS(complex) multiply with two real multiplies
|
|
R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
|
|
CS = ONE / F2S
|
|
D = F2 + G2
|
|
* Do complex/real division explicitly with two real divisions
|
|
SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
|
|
SN = SN*CONJG( GS )
|
|
IF( COUNT.NE.0 ) THEN
|
|
IF( COUNT.GT.0 ) THEN
|
|
DO 30 I = 1, COUNT
|
|
R = R*SAFMX2
|
|
30 CONTINUE
|
|
ELSE
|
|
DO 40 I = 1, -COUNT
|
|
R = R*SAFMN2
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
*
|
|
* End of CLARTG
|
|
*
|
|
END
|