1220 lines
36 KiB
C
1220 lines
36 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <complex.h>
|
|
#ifdef complex
|
|
#undef complex
|
|
#endif
|
|
#ifdef I
|
|
#undef I
|
|
#endif
|
|
|
|
#if defined(_WIN64)
|
|
typedef long long BLASLONG;
|
|
typedef unsigned long long BLASULONG;
|
|
#else
|
|
typedef long BLASLONG;
|
|
typedef unsigned long BLASULONG;
|
|
#endif
|
|
|
|
#ifdef LAPACK_ILP64
|
|
typedef BLASLONG blasint;
|
|
#if defined(_WIN64)
|
|
#define blasabs(x) llabs(x)
|
|
#else
|
|
#define blasabs(x) labs(x)
|
|
#endif
|
|
#else
|
|
typedef int blasint;
|
|
#define blasabs(x) abs(x)
|
|
#endif
|
|
|
|
typedef blasint integer;
|
|
|
|
typedef unsigned int uinteger;
|
|
typedef char *address;
|
|
typedef short int shortint;
|
|
typedef float real;
|
|
typedef double doublereal;
|
|
typedef struct { real r, i; } complex;
|
|
typedef struct { doublereal r, i; } doublecomplex;
|
|
#ifdef _MSC_VER
|
|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
|
|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
|
|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
|
|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
|
|
#else
|
|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
|
|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
|
|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
|
|
#endif
|
|
#define pCf(z) (*_pCf(z))
|
|
#define pCd(z) (*_pCd(z))
|
|
typedef int logical;
|
|
typedef short int shortlogical;
|
|
typedef char logical1;
|
|
typedef char integer1;
|
|
|
|
#define TRUE_ (1)
|
|
#define FALSE_ (0)
|
|
|
|
/* Extern is for use with -E */
|
|
#ifndef Extern
|
|
#define Extern extern
|
|
#endif
|
|
|
|
/* I/O stuff */
|
|
|
|
typedef int flag;
|
|
typedef int ftnlen;
|
|
typedef int ftnint;
|
|
|
|
/*external read, write*/
|
|
typedef struct
|
|
{ flag cierr;
|
|
ftnint ciunit;
|
|
flag ciend;
|
|
char *cifmt;
|
|
ftnint cirec;
|
|
} cilist;
|
|
|
|
/*internal read, write*/
|
|
typedef struct
|
|
{ flag icierr;
|
|
char *iciunit;
|
|
flag iciend;
|
|
char *icifmt;
|
|
ftnint icirlen;
|
|
ftnint icirnum;
|
|
} icilist;
|
|
|
|
/*open*/
|
|
typedef struct
|
|
{ flag oerr;
|
|
ftnint ounit;
|
|
char *ofnm;
|
|
ftnlen ofnmlen;
|
|
char *osta;
|
|
char *oacc;
|
|
char *ofm;
|
|
ftnint orl;
|
|
char *oblnk;
|
|
} olist;
|
|
|
|
/*close*/
|
|
typedef struct
|
|
{ flag cerr;
|
|
ftnint cunit;
|
|
char *csta;
|
|
} cllist;
|
|
|
|
/*rewind, backspace, endfile*/
|
|
typedef struct
|
|
{ flag aerr;
|
|
ftnint aunit;
|
|
} alist;
|
|
|
|
/* inquire */
|
|
typedef struct
|
|
{ flag inerr;
|
|
ftnint inunit;
|
|
char *infile;
|
|
ftnlen infilen;
|
|
ftnint *inex; /*parameters in standard's order*/
|
|
ftnint *inopen;
|
|
ftnint *innum;
|
|
ftnint *innamed;
|
|
char *inname;
|
|
ftnlen innamlen;
|
|
char *inacc;
|
|
ftnlen inacclen;
|
|
char *inseq;
|
|
ftnlen inseqlen;
|
|
char *indir;
|
|
ftnlen indirlen;
|
|
char *infmt;
|
|
ftnlen infmtlen;
|
|
char *inform;
|
|
ftnint informlen;
|
|
char *inunf;
|
|
ftnlen inunflen;
|
|
ftnint *inrecl;
|
|
ftnint *innrec;
|
|
char *inblank;
|
|
ftnlen inblanklen;
|
|
} inlist;
|
|
|
|
#define VOID void
|
|
|
|
union Multitype { /* for multiple entry points */
|
|
integer1 g;
|
|
shortint h;
|
|
integer i;
|
|
/* longint j; */
|
|
real r;
|
|
doublereal d;
|
|
complex c;
|
|
doublecomplex z;
|
|
};
|
|
|
|
typedef union Multitype Multitype;
|
|
|
|
struct Vardesc { /* for Namelist */
|
|
char *name;
|
|
char *addr;
|
|
ftnlen *dims;
|
|
int type;
|
|
};
|
|
typedef struct Vardesc Vardesc;
|
|
|
|
struct Namelist {
|
|
char *name;
|
|
Vardesc **vars;
|
|
int nvars;
|
|
};
|
|
typedef struct Namelist Namelist;
|
|
|
|
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
|
#define dabs(x) (fabs(x))
|
|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
|
|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
|
|
#define dmin(a,b) (f2cmin(a,b))
|
|
#define dmax(a,b) (f2cmax(a,b))
|
|
#define bit_test(a,b) ((a) >> (b) & 1)
|
|
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
|
|
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
|
|
|
|
#define abort_() { sig_die("Fortran abort routine called", 1); }
|
|
#define c_abs(z) (cabsf(Cf(z)))
|
|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
|
|
#ifdef _MSC_VER
|
|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
|
|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
|
|
#else
|
|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
|
|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
|
|
#endif
|
|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
|
|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
|
|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
|
|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
|
|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
|
|
#define d_abs(x) (fabs(*(x)))
|
|
#define d_acos(x) (acos(*(x)))
|
|
#define d_asin(x) (asin(*(x)))
|
|
#define d_atan(x) (atan(*(x)))
|
|
#define d_atn2(x, y) (atan2(*(x),*(y)))
|
|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
|
|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
|
|
#define d_cos(x) (cos(*(x)))
|
|
#define d_cosh(x) (cosh(*(x)))
|
|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
|
|
#define d_exp(x) (exp(*(x)))
|
|
#define d_imag(z) (cimag(Cd(z)))
|
|
#define r_imag(z) (cimagf(Cf(z)))
|
|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
|
|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
|
|
#define d_log(x) (log(*(x)))
|
|
#define d_mod(x, y) (fmod(*(x), *(y)))
|
|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
|
|
#define d_nint(x) u_nint(*(x))
|
|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
|
|
#define d_sign(a,b) u_sign(*(a),*(b))
|
|
#define r_sign(a,b) u_sign(*(a),*(b))
|
|
#define d_sin(x) (sin(*(x)))
|
|
#define d_sinh(x) (sinh(*(x)))
|
|
#define d_sqrt(x) (sqrt(*(x)))
|
|
#define d_tan(x) (tan(*(x)))
|
|
#define d_tanh(x) (tanh(*(x)))
|
|
#define i_abs(x) abs(*(x))
|
|
#define i_dnnt(x) ((integer)u_nint(*(x)))
|
|
#define i_len(s, n) (n)
|
|
#define i_nint(x) ((integer)u_nint(*(x)))
|
|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
|
|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
|
|
#define pow_si(B,E) spow_ui(*(B),*(E))
|
|
#define pow_ri(B,E) spow_ui(*(B),*(E))
|
|
#define pow_di(B,E) dpow_ui(*(B),*(E))
|
|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
|
|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
|
|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
|
|
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
|
|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
|
|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
|
|
#define sig_die(s, kill) { exit(1); }
|
|
#define s_stop(s, n) {exit(0);}
|
|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
|
|
#define z_abs(z) (cabs(Cd(z)))
|
|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
|
|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
|
|
#define myexit_() break;
|
|
#define mycycle() continue;
|
|
#define myceiling(w) {ceil(w)}
|
|
#define myhuge(w) {HUGE_VAL}
|
|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
|
|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
|
|
|
|
/* procedure parameter types for -A and -C++ */
|
|
|
|
#define F2C_proc_par_types 1
|
|
#ifdef __cplusplus
|
|
typedef logical (*L_fp)(...);
|
|
#else
|
|
typedef logical (*L_fp)();
|
|
#endif
|
|
|
|
static float spow_ui(float x, integer n) {
|
|
float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static double dpow_ui(double x, integer n) {
|
|
double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#ifdef _MSC_VER
|
|
static _Fcomplex cpow_ui(complex x, integer n) {
|
|
complex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow.r *= x.r, pow.i *= x.i;
|
|
if(u >>= 1) x.r *= x.r, x.i *= x.i;
|
|
else break;
|
|
}
|
|
}
|
|
_Fcomplex p={pow.r, pow.i};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex float cpow_ui(_Complex float x, integer n) {
|
|
_Complex float pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
|
|
_Dcomplex pow={1.0,0.0}; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
|
|
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
|
|
else break;
|
|
}
|
|
}
|
|
_Dcomplex p = {pow._Val[0], pow._Val[1]};
|
|
return p;
|
|
}
|
|
#else
|
|
static _Complex double zpow_ui(_Complex double x, integer n) {
|
|
_Complex double pow=1.0; unsigned long int u;
|
|
if(n != 0) {
|
|
if(n < 0) n = -n, x = 1/x;
|
|
for(u = n; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
#endif
|
|
static integer pow_ii(integer x, integer n) {
|
|
integer pow; unsigned long int u;
|
|
if (n <= 0) {
|
|
if (n == 0 || x == 1) pow = 1;
|
|
else if (x != -1) pow = x == 0 ? 1/x : 0;
|
|
else n = -n;
|
|
}
|
|
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
|
|
u = n;
|
|
for(pow = 1; ; ) {
|
|
if(u & 01) pow *= x;
|
|
if(u >>= 1) x *= x;
|
|
else break;
|
|
}
|
|
}
|
|
return pow;
|
|
}
|
|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
|
|
{
|
|
double m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
|
|
{
|
|
float m; integer i, mi;
|
|
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
|
|
if (w[i-1]>m) mi=i ,m=w[i-1];
|
|
return mi-s+1;
|
|
}
|
|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Fcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex float zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i]) * Cf(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
|
|
}
|
|
}
|
|
pCf(z) = zdotc;
|
|
}
|
|
#endif
|
|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
|
|
integer n = *n_, incx = *incx_, incy = *incy_, i;
|
|
#ifdef _MSC_VER
|
|
_Dcomplex zdotc = {0.0, 0.0};
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
|
|
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#else
|
|
_Complex double zdotc = 0.0;
|
|
if (incx == 1 && incy == 1) {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i]) * Cd(&y[i]);
|
|
}
|
|
} else {
|
|
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
|
|
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
|
|
}
|
|
}
|
|
pCd(z) = zdotc;
|
|
}
|
|
#endif
|
|
/* -- translated by f2c (version 20000121).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static complex c_b1 = {0.f,0.f};
|
|
static complex c_b2 = {1.f,0.f};
|
|
static integer c__1 = 1;
|
|
static integer c__0 = 0;
|
|
static integer c__5 = 5;
|
|
|
|
/* > \brief \b CLATME */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE CLATME( N, DIST, ISEED, D, MODE, COND, DMAX, */
|
|
/* RSIGN, */
|
|
/* UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, */
|
|
/* A, */
|
|
/* LDA, WORK, INFO ) */
|
|
|
|
/* CHARACTER DIST, RSIGN, SIM, UPPER */
|
|
/* INTEGER INFO, KL, KU, LDA, MODE, MODES, N */
|
|
/* REAL ANORM, COND, CONDS */
|
|
/* COMPLEX DMAX */
|
|
/* INTEGER ISEED( 4 ) */
|
|
/* REAL DS( * ) */
|
|
/* COMPLEX A( LDA, * ), D( * ), WORK( * ) */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > CLATME generates random non-symmetric square matrices with */
|
|
/* > specified eigenvalues for testing LAPACK programs. */
|
|
/* > */
|
|
/* > CLATME operates by applying the following sequence of */
|
|
/* > operations: */
|
|
/* > */
|
|
/* > 1. Set the diagonal to D, where D may be input or */
|
|
/* > computed according to MODE, COND, DMAX, and RSIGN */
|
|
/* > as described below. */
|
|
/* > */
|
|
/* > 2. If UPPER='T', the upper triangle of A is set to random values */
|
|
/* > out of distribution DIST. */
|
|
/* > */
|
|
/* > 3. If SIM='T', A is multiplied on the left by a random matrix */
|
|
/* > X, whose singular values are specified by DS, MODES, and */
|
|
/* > CONDS, and on the right by X inverse. */
|
|
/* > */
|
|
/* > 4. If KL < N-1, the lower bandwidth is reduced to KL using */
|
|
/* > Householder transformations. If KU < N-1, the upper */
|
|
/* > bandwidth is reduced to KU. */
|
|
/* > */
|
|
/* > 5. If ANORM is not negative, the matrix is scaled to have */
|
|
/* > maximum-element-norm ANORM. */
|
|
/* > */
|
|
/* > (Note: since the matrix cannot be reduced beyond Hessenberg form, */
|
|
/* > no packing options are available.) */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns (or rows) of A. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DIST */
|
|
/* > \verbatim */
|
|
/* > DIST is CHARACTER*1 */
|
|
/* > On entry, DIST specifies the type of distribution to be used */
|
|
/* > to generate the random eigen-/singular values, and on the */
|
|
/* > upper triangle (see UPPER). */
|
|
/* > 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) */
|
|
/* > 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
|
|
/* > 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) */
|
|
/* > 'D' => uniform on the complex disc |z| < 1. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] ISEED */
|
|
/* > \verbatim */
|
|
/* > ISEED is INTEGER array, dimension ( 4 ) */
|
|
/* > On entry ISEED specifies the seed of the random number */
|
|
/* > generator. They should lie between 0 and 4095 inclusive, */
|
|
/* > and ISEED(4) should be odd. The random number generator */
|
|
/* > uses a linear congruential sequence limited to small */
|
|
/* > integers, and so should produce machine independent */
|
|
/* > random numbers. The values of ISEED are changed on */
|
|
/* > exit, and can be used in the next call to CLATME */
|
|
/* > to continue the same random number sequence. */
|
|
/* > Changed on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] D */
|
|
/* > \verbatim */
|
|
/* > D is COMPLEX array, dimension ( N ) */
|
|
/* > This array is used to specify the eigenvalues of A. If */
|
|
/* > MODE=0, then D is assumed to contain the eigenvalues */
|
|
/* > otherwise they will be computed according to MODE, COND, */
|
|
/* > DMAX, and RSIGN and placed in D. */
|
|
/* > Modified if MODE is nonzero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] MODE */
|
|
/* > \verbatim */
|
|
/* > MODE is INTEGER */
|
|
/* > On entry this describes how the eigenvalues are to */
|
|
/* > be specified: */
|
|
/* > MODE = 0 means use D as input */
|
|
/* > MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
|
|
/* > MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
|
|
/* > MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
|
|
/* > MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
|
|
/* > MODE = 5 sets D to random numbers in the range */
|
|
/* > ( 1/COND , 1 ) such that their logarithms */
|
|
/* > are uniformly distributed. */
|
|
/* > MODE = 6 set D to random numbers from same distribution */
|
|
/* > as the rest of the matrix. */
|
|
/* > MODE < 0 has the same meaning as ABS(MODE), except that */
|
|
/* > the order of the elements of D is reversed. */
|
|
/* > Thus if MODE is between 1 and 4, D has entries ranging */
|
|
/* > from 1 to 1/COND, if between -1 and -4, D has entries */
|
|
/* > ranging from 1/COND to 1, */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] COND */
|
|
/* > \verbatim */
|
|
/* > COND is REAL */
|
|
/* > On entry, this is used as described under MODE above. */
|
|
/* > If used, it must be >= 1. Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DMAX */
|
|
/* > \verbatim */
|
|
/* > DMAX is COMPLEX */
|
|
/* > If MODE is neither -6, 0 nor 6, the contents of D, as */
|
|
/* > computed according to MODE and COND, will be scaled by */
|
|
/* > DMAX / f2cmax(abs(D(i))). Note that DMAX need not be */
|
|
/* > positive or real: if DMAX is negative or complex (or zero), */
|
|
/* > D will be scaled by a negative or complex number (or zero). */
|
|
/* > If RSIGN='F' then the largest (absolute) eigenvalue will be */
|
|
/* > equal to DMAX. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] RSIGN */
|
|
/* > \verbatim */
|
|
/* > RSIGN is CHARACTER*1 */
|
|
/* > If MODE is not 0, 6, or -6, and RSIGN='T', then the */
|
|
/* > elements of D, as computed according to MODE and COND, will */
|
|
/* > be multiplied by a random complex number from the unit */
|
|
/* > circle |z| = 1. If RSIGN='F', they will not be. RSIGN may */
|
|
/* > only have the values 'T' or 'F'. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPPER */
|
|
/* > \verbatim */
|
|
/* > UPPER is CHARACTER*1 */
|
|
/* > If UPPER='T', then the elements of A above the diagonal */
|
|
/* > will be set to random numbers out of DIST. If UPPER='F', */
|
|
/* > they will not. UPPER may only have the values 'T' or 'F'. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] SIM */
|
|
/* > \verbatim */
|
|
/* > SIM is CHARACTER*1 */
|
|
/* > If SIM='T', then A will be operated on by a "similarity */
|
|
/* > transform", i.e., multiplied on the left by a matrix X and */
|
|
/* > on the right by X inverse. X = U S V, where U and V are */
|
|
/* > random unitary matrices and S is a (diagonal) matrix of */
|
|
/* > singular values specified by DS, MODES, and CONDS. If */
|
|
/* > SIM='F', then A will not be transformed. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] DS */
|
|
/* > \verbatim */
|
|
/* > DS is REAL array, dimension ( N ) */
|
|
/* > This array is used to specify the singular values of X, */
|
|
/* > in the same way that D specifies the eigenvalues of A. */
|
|
/* > If MODE=0, the DS contains the singular values, which */
|
|
/* > may not be zero. */
|
|
/* > Modified if MODE is nonzero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] MODES */
|
|
/* > \verbatim */
|
|
/* > MODES is INTEGER */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] CONDS */
|
|
/* > \verbatim */
|
|
/* > CONDS is REAL */
|
|
/* > Similar to MODE and COND, but for specifying the diagonal */
|
|
/* > of S. MODES=-6 and +6 are not allowed (since they would */
|
|
/* > result in randomly ill-conditioned eigenvalues.) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KL */
|
|
/* > \verbatim */
|
|
/* > KL is INTEGER */
|
|
/* > This specifies the lower bandwidth of the matrix. KL=1 */
|
|
/* > specifies upper Hessenberg form. If KL is at least N-1, */
|
|
/* > then A will have full lower bandwidth. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] KU */
|
|
/* > \verbatim */
|
|
/* > KU is INTEGER */
|
|
/* > This specifies the upper bandwidth of the matrix. KU=1 */
|
|
/* > specifies lower Hessenberg form. If KU is at least N-1, */
|
|
/* > then A will have full upper bandwidth; if KU and KL */
|
|
/* > are both at least N-1, then A will be dense. Only one of */
|
|
/* > KU and KL may be less than N-1. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ANORM */
|
|
/* > \verbatim */
|
|
/* > ANORM is REAL */
|
|
/* > If ANORM is not negative, then A will be scaled by a non- */
|
|
/* > negative real number to make the maximum-element-norm of A */
|
|
/* > to be ANORM. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX array, dimension ( LDA, N ) */
|
|
/* > On exit A is the desired test matrix. */
|
|
/* > Modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > LDA specifies the first dimension of A as declared in the */
|
|
/* > calling program. LDA must be at least M. */
|
|
/* > Not modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is COMPLEX array, dimension ( 3*N ) */
|
|
/* > Workspace. */
|
|
/* > Modified. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > Error code. On exit, INFO will be set to one of the */
|
|
/* > following values: */
|
|
/* > 0 => normal return */
|
|
/* > -1 => N negative */
|
|
/* > -2 => DIST illegal string */
|
|
/* > -5 => MODE not in range -6 to 6 */
|
|
/* > -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
|
|
/* > -9 => RSIGN is not 'T' or 'F' */
|
|
/* > -10 => UPPER is not 'T' or 'F' */
|
|
/* > -11 => SIM is not 'T' or 'F' */
|
|
/* > -12 => MODES=0 and DS has a zero singular value. */
|
|
/* > -13 => MODES is not in the range -5 to 5. */
|
|
/* > -14 => MODES is nonzero and CONDS is less than 1. */
|
|
/* > -15 => KL is less than 1. */
|
|
/* > -16 => KU is less than 1, or KL and KU are both less than */
|
|
/* > N-1. */
|
|
/* > -19 => LDA is less than M. */
|
|
/* > 1 => Error return from CLATM1 (computing D) */
|
|
/* > 2 => Cannot scale to DMAX (f2cmax. eigenvalue is 0) */
|
|
/* > 3 => Error return from SLATM1 (computing DS) */
|
|
/* > 4 => Error return from CLARGE */
|
|
/* > 5 => Zero singular value from SLATM1. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \date December 2016 */
|
|
|
|
/* > \ingroup complex_matgen */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ void clatme_(integer *n, char *dist, integer *iseed, complex *
|
|
d__, integer *mode, real *cond, complex *dmax__, char *rsign, char *
|
|
upper, char *sim, real *ds, integer *modes, real *conds, integer *kl,
|
|
integer *ku, real *anorm, complex *a, integer *lda, complex *work,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
real r__1, r__2;
|
|
complex q__1, q__2;
|
|
|
|
/* Local variables */
|
|
logical bads;
|
|
integer isim;
|
|
real temp;
|
|
integer i__, j;
|
|
extern /* Subroutine */ void cgerc_(integer *, integer *, complex *,
|
|
complex *, integer *, complex *, integer *, complex *, integer *);
|
|
complex alpha;
|
|
extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
|
|
, complex *, integer *, complex *, integer *, complex *, complex *
|
|
, integer *);
|
|
integer iinfo;
|
|
real tempa[1];
|
|
integer icols, idist;
|
|
extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
|
|
complex *, integer *);
|
|
integer irows;
|
|
extern /* Subroutine */ void clatm1_(integer *, real *, integer *, integer
|
|
*, integer *, complex *, integer *, integer *), slatm1_(integer *,
|
|
real *, integer *, integer *, integer *, real *, integer *,
|
|
integer *);
|
|
integer ic, jc;
|
|
extern real clange_(char *, integer *, integer *, complex *, integer *,
|
|
real *);
|
|
integer ir;
|
|
extern /* Subroutine */ void clarge_(integer *, complex *, integer *,
|
|
integer *, complex *, integer *), clarfg_(integer *, complex *,
|
|
complex *, integer *, complex *), clacgv_(integer *, complex *,
|
|
integer *);
|
|
//extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
|
|
extern complex clarnd_(integer *, integer *);
|
|
real ralpha;
|
|
extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
|
|
*), claset_(char *, integer *, integer *, complex *, complex *,
|
|
complex *, integer *);
|
|
extern int xerbla_(char *, integer *, ftnlen);
|
|
extern void clarnv_(integer *, integer *, integer *, complex *);
|
|
integer irsign, iupper;
|
|
complex xnorms;
|
|
integer jcr;
|
|
complex tau;
|
|
|
|
|
|
/* -- LAPACK computational routine (version 3.7.0) -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
/* December 2016 */
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
/* 1) Decode and Test the input parameters. */
|
|
/* Initialize flags & seed. */
|
|
|
|
/* Parameter adjustments */
|
|
--iseed;
|
|
--d__;
|
|
--ds;
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Decode DIST */
|
|
|
|
if (lsame_(dist, "U")) {
|
|
idist = 1;
|
|
} else if (lsame_(dist, "S")) {
|
|
idist = 2;
|
|
} else if (lsame_(dist, "N")) {
|
|
idist = 3;
|
|
} else if (lsame_(dist, "D")) {
|
|
idist = 4;
|
|
} else {
|
|
idist = -1;
|
|
}
|
|
|
|
/* Decode RSIGN */
|
|
|
|
if (lsame_(rsign, "T")) {
|
|
irsign = 1;
|
|
} else if (lsame_(rsign, "F")) {
|
|
irsign = 0;
|
|
} else {
|
|
irsign = -1;
|
|
}
|
|
|
|
/* Decode UPPER */
|
|
|
|
if (lsame_(upper, "T")) {
|
|
iupper = 1;
|
|
} else if (lsame_(upper, "F")) {
|
|
iupper = 0;
|
|
} else {
|
|
iupper = -1;
|
|
}
|
|
|
|
/* Decode SIM */
|
|
|
|
if (lsame_(sim, "T")) {
|
|
isim = 1;
|
|
} else if (lsame_(sim, "F")) {
|
|
isim = 0;
|
|
} else {
|
|
isim = -1;
|
|
}
|
|
|
|
/* Check DS, if MODES=0 and ISIM=1 */
|
|
|
|
bads = FALSE_;
|
|
if (*modes == 0 && isim == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (ds[j] == 0.f) {
|
|
bads = TRUE_;
|
|
}
|
|
/* L10: */
|
|
}
|
|
}
|
|
|
|
/* Set INFO if an error */
|
|
|
|
if (*n < 0) {
|
|
*info = -1;
|
|
} else if (idist == -1) {
|
|
*info = -2;
|
|
} else if (abs(*mode) > 6) {
|
|
*info = -5;
|
|
} else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.f) {
|
|
*info = -6;
|
|
} else if (irsign == -1) {
|
|
*info = -9;
|
|
} else if (iupper == -1) {
|
|
*info = -10;
|
|
} else if (isim == -1) {
|
|
*info = -11;
|
|
} else if (bads) {
|
|
*info = -12;
|
|
} else if (isim == 1 && abs(*modes) > 5) {
|
|
*info = -13;
|
|
} else if (isim == 1 && *modes != 0 && *conds < 1.f) {
|
|
*info = -14;
|
|
} else if (*kl < 1) {
|
|
*info = -15;
|
|
} else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) {
|
|
*info = -16;
|
|
} else if (*lda < f2cmax(1,*n)) {
|
|
*info = -19;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("CLATME", &i__1, 6);
|
|
return;
|
|
}
|
|
|
|
/* Initialize random number generator */
|
|
|
|
for (i__ = 1; i__ <= 4; ++i__) {
|
|
iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
|
|
/* L20: */
|
|
}
|
|
|
|
if (iseed[4] % 2 != 1) {
|
|
++iseed[4];
|
|
}
|
|
|
|
/* 2) Set up diagonal of A */
|
|
|
|
/* Compute D according to COND and MODE */
|
|
|
|
clatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = 1;
|
|
return;
|
|
}
|
|
if (*mode != 0 && abs(*mode) != 6) {
|
|
|
|
/* Scale by DMAX */
|
|
|
|
temp = c_abs(&d__[1]);
|
|
i__1 = *n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
/* Computing MAX */
|
|
r__1 = temp, r__2 = c_abs(&d__[i__]);
|
|
temp = f2cmax(r__1,r__2);
|
|
/* L30: */
|
|
}
|
|
|
|
if (temp > 0.f) {
|
|
q__1.r = dmax__->r / temp, q__1.i = dmax__->i / temp;
|
|
alpha.r = q__1.r, alpha.i = q__1.i;
|
|
} else {
|
|
*info = 2;
|
|
return;
|
|
}
|
|
|
|
cscal_(n, &alpha, &d__[1], &c__1);
|
|
|
|
}
|
|
|
|
claset_("Full", n, n, &c_b1, &c_b1, &a[a_offset], lda);
|
|
i__1 = *lda + 1;
|
|
ccopy_(n, &d__[1], &c__1, &a[a_offset], &i__1);
|
|
|
|
/* 3) If UPPER='T', set upper triangle of A to random numbers. */
|
|
|
|
if (iupper != 0) {
|
|
i__1 = *n;
|
|
for (jc = 2; jc <= i__1; ++jc) {
|
|
i__2 = jc - 1;
|
|
clarnv_(&idist, &iseed[1], &i__2, &a[jc * a_dim1 + 1]);
|
|
/* L40: */
|
|
}
|
|
}
|
|
|
|
/* 4) If SIM='T', apply similarity transformation. */
|
|
|
|
/* -1 */
|
|
/* Transform is X A X , where X = U S V, thus */
|
|
|
|
/* it is U S V A V' (1/S) U' */
|
|
|
|
if (isim != 0) {
|
|
|
|
/* Compute S (singular values of the eigenvector matrix) */
|
|
/* according to CONDS and MODES */
|
|
|
|
slatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = 3;
|
|
return;
|
|
}
|
|
|
|
/* Multiply by V and V' */
|
|
|
|
clarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = 4;
|
|
return;
|
|
}
|
|
|
|
/* Multiply by S and (1/S) */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
csscal_(n, &ds[j], &a[j + a_dim1], lda);
|
|
if (ds[j] != 0.f) {
|
|
r__1 = 1.f / ds[j];
|
|
csscal_(n, &r__1, &a[j * a_dim1 + 1], &c__1);
|
|
} else {
|
|
*info = 5;
|
|
return;
|
|
}
|
|
/* L50: */
|
|
}
|
|
|
|
/* Multiply by U and U' */
|
|
|
|
clarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
|
|
if (iinfo != 0) {
|
|
*info = 4;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* 5) Reduce the bandwidth. */
|
|
|
|
if (*kl < *n - 1) {
|
|
|
|
/* Reduce bandwidth -- kill column */
|
|
|
|
i__1 = *n - 1;
|
|
for (jcr = *kl + 1; jcr <= i__1; ++jcr) {
|
|
ic = jcr - *kl;
|
|
irows = *n + 1 - jcr;
|
|
icols = *n + *kl - jcr;
|
|
|
|
ccopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1);
|
|
xnorms.r = work[1].r, xnorms.i = work[1].i;
|
|
clarfg_(&irows, &xnorms, &work[2], &c__1, &tau);
|
|
r_cnjg(&q__1, &tau);
|
|
tau.r = q__1.r, tau.i = q__1.i;
|
|
work[1].r = 1.f, work[1].i = 0.f;
|
|
//clarnd_(&q__1, &c__5, &iseed[1]);
|
|
q__1=clarnd_(&c__5, &iseed[1]);
|
|
alpha.r = q__1.r, alpha.i = q__1.i;
|
|
|
|
cgemv_("C", &irows, &icols, &c_b2, &a[jcr + (ic + 1) * a_dim1],
|
|
lda, &work[1], &c__1, &c_b1, &work[irows + 1], &c__1);
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&irows, &icols, &q__1, &work[1], &c__1, &work[irows + 1], &
|
|
c__1, &a[jcr + (ic + 1) * a_dim1], lda);
|
|
|
|
cgemv_("N", n, &irows, &c_b2, &a[jcr * a_dim1 + 1], lda, &work[1],
|
|
&c__1, &c_b1, &work[irows + 1], &c__1);
|
|
r_cnjg(&q__2, &tau);
|
|
q__1.r = -q__2.r, q__1.i = -q__2.i;
|
|
cgerc_(n, &irows, &q__1, &work[irows + 1], &c__1, &work[1], &c__1,
|
|
&a[jcr * a_dim1 + 1], lda);
|
|
|
|
i__2 = jcr + ic * a_dim1;
|
|
a[i__2].r = xnorms.r, a[i__2].i = xnorms.i;
|
|
i__2 = irows - 1;
|
|
claset_("Full", &i__2, &c__1, &c_b1, &c_b1, &a[jcr + 1 + ic *
|
|
a_dim1], lda);
|
|
|
|
i__2 = icols + 1;
|
|
cscal_(&i__2, &alpha, &a[jcr + ic * a_dim1], lda);
|
|
r_cnjg(&q__1, &alpha);
|
|
cscal_(n, &q__1, &a[jcr * a_dim1 + 1], &c__1);
|
|
/* L60: */
|
|
}
|
|
} else if (*ku < *n - 1) {
|
|
|
|
/* Reduce upper bandwidth -- kill a row at a time. */
|
|
|
|
i__1 = *n - 1;
|
|
for (jcr = *ku + 1; jcr <= i__1; ++jcr) {
|
|
ir = jcr - *ku;
|
|
irows = *n + *ku - jcr;
|
|
icols = *n + 1 - jcr;
|
|
|
|
ccopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1);
|
|
xnorms.r = work[1].r, xnorms.i = work[1].i;
|
|
clarfg_(&icols, &xnorms, &work[2], &c__1, &tau);
|
|
r_cnjg(&q__1, &tau);
|
|
tau.r = q__1.r, tau.i = q__1.i;
|
|
work[1].r = 1.f, work[1].i = 0.f;
|
|
i__2 = icols - 1;
|
|
clacgv_(&i__2, &work[2], &c__1);
|
|
//clarnd_(&q__1, &c__5, &iseed[1]);
|
|
q__1=clarnd_(&c__5, &iseed[1]);
|
|
alpha.r = q__1.r, alpha.i = q__1.i;
|
|
|
|
cgemv_("N", &irows, &icols, &c_b2, &a[ir + 1 + jcr * a_dim1], lda,
|
|
&work[1], &c__1, &c_b1, &work[icols + 1], &c__1);
|
|
q__1.r = -tau.r, q__1.i = -tau.i;
|
|
cgerc_(&irows, &icols, &q__1, &work[icols + 1], &c__1, &work[1], &
|
|
c__1, &a[ir + 1 + jcr * a_dim1], lda);
|
|
|
|
cgemv_("C", &icols, n, &c_b2, &a[jcr + a_dim1], lda, &work[1], &
|
|
c__1, &c_b1, &work[icols + 1], &c__1);
|
|
r_cnjg(&q__2, &tau);
|
|
q__1.r = -q__2.r, q__1.i = -q__2.i;
|
|
cgerc_(&icols, n, &q__1, &work[1], &c__1, &work[icols + 1], &c__1,
|
|
&a[jcr + a_dim1], lda);
|
|
|
|
i__2 = ir + jcr * a_dim1;
|
|
a[i__2].r = xnorms.r, a[i__2].i = xnorms.i;
|
|
i__2 = icols - 1;
|
|
claset_("Full", &c__1, &i__2, &c_b1, &c_b1, &a[ir + (jcr + 1) *
|
|
a_dim1], lda);
|
|
|
|
i__2 = irows + 1;
|
|
cscal_(&i__2, &alpha, &a[ir + jcr * a_dim1], &c__1);
|
|
r_cnjg(&q__1, &alpha);
|
|
cscal_(n, &q__1, &a[jcr + a_dim1], lda);
|
|
/* L70: */
|
|
}
|
|
}
|
|
|
|
/* Scale the matrix to have norm ANORM */
|
|
|
|
if (*anorm >= 0.f) {
|
|
temp = clange_("M", n, n, &a[a_offset], lda, tempa);
|
|
if (temp > 0.f) {
|
|
ralpha = *anorm / temp;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
csscal_(n, &ralpha, &a[j * a_dim1 + 1], &c__1);
|
|
/* L80: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
/* End of CLATME */
|
|
|
|
} /* clatme_ */
|
|
|